IBM Research
The Grid-Based Path Planning Competition: 2014 Entries and Results
Sturtevant, Nathan R. (University of Denver) | Traish, Jason (Charles Sturt University) | Tulip, James (Charles Sturt University) | Uras, Tansel (University of Southern California) | Koenig, Sven (University of Southern California) | Strasser, Ben (Karlsruhe Institute of Technology) | Botea, Adi (IBM Research) | Harabor, Daniel (NICTA) | Rabin, Steve (DigiPen Institute of Technology)
The Grid-Based Path Planning Competition has just completed its third iteration. The entriesused in the competition have improved significantly during this time, changing the view ofthe state of the art of grid-based pathfinding. Furthermore, the entries from the competition have beenmade publicly available, improving the ability of researchers to compare their work. Thispaper summarizes the entries to the 2014 competition, presents the 2014 competition results,and talks about what has been learned and where there is room for improvement.
Reports of the AAAI 2014 Conference Workshops
Albrecht, Stefano V. (University of Edinburgh) | Barreto, Andrรฉ M. S. (Brazilian National Laboratory for Scientific Computing) | Braziunas, Darius (Kobo Inc.) | Buckeridge, David L. (McGill University) | Cuayรกhuitl, Heriberto (Heriot-Watt University) | Dethlefs, Nina (Heriot-Watt University) | Endres, Markus (University of Augsburg) | Farahmand, Amir-massoud (Carnegie Mellon University) | Fox, Mark (University of Toronto) | Frommberger, Lutz (University of Bremen) | Ganzfried, Sam (Carnegie Mellon University) | Gil, Yolanda (University of Southern California) | Guillet, Sรฉbastien (Universitรฉ du Quรฉbec ร Chicoutimi) | Hunter, Lawrence E. (University of Colorado School of Medicine) | Jhala, Arnav (University of California Santa Cruz) | Kersting, Kristian (Technical University of Dortmund) | Konidaris, George (Massachusetts Institute of Technology) | Lecue, Freddy (IBM Research) | McIlraith, Sheila (University of Toronto) | Natarajan, Sriraam (Indiana University) | Noorian, Zeinab (University of Saskatchewan) | Poole, David (University of British Columbia) | Ronfard, Rรฉmi (University of Grenoble) | Saffiotti, Alessandro (Orebro University) | Shaban-Nejad, Arash (McGill University) | Srivastava, Biplav (IBM Research) | Tesauro, Gerald (IBM Research) | Uceda-Sosa, Rosario (IBM Research) | Broeck, Guy Van den (Katholieke Universiteit Leuven) | Otterlo, Martijn van (Radboud University Nijmegen) | Wallace, Byron C. (University of Texas) | Weng, Paul (Pierre and Marie Curie University) | Wiens, Jenna (University of Michigan) | Zhang, Jie (Nanyang Technological University)
The AAAI-14 Workshop program was held Sunday and Monday, July 27โ28, 2012, at the Quรฉbec City Convention Centre in Quรฉbec, Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities -- Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.
Reports of the AAAI 2014 Conference Workshops
Albrecht, Stefano V. (University of Edinburgh) | Barreto, Andrรฉ M. S. (Brazilian National Laboratory for Scientific Computing) | Braziunas, Darius (Kobo Inc.) | Buckeridge, David L. (McGill University) | Cuayรกhuitl, Heriberto (Heriot-Watt University) | Dethlefs, Nina (Heriot-Watt University) | Endres, Markus (University of Augsburg) | Farahmand, Amir-massoud (Carnegie Mellon University) | Fox, Mark (University of Toronto) | Frommberger, Lutz (University of Bremen) | Ganzfried, Sam (Carnegie Mellon University) | Gil, Yolanda (University of Southern California) | Guillet, Sรฉbastien (Universitรฉ du Quรฉbec ร Chicoutimi) | Hunter, Lawrence E. (University of Colorado School of Medicine) | Jhala, Arnav (University of California Santa Cruz) | Kersting, Kristian (Technical University of Dortmund) | Konidaris, George (Massachusetts Institute of Technology) | Lecue, Freddy (IBM Research) | McIlraith, Sheila (University of Toronto) | Natarajan, Sriraam (Indiana University) | Noorian, Zeinab (University of Saskatchewan) | Poole, David (University of British Columbia) | Ronfard, Rรฉmi (University of Grenoble) | Saffiotti, Alessandro (Orebro University) | Shaban-Nejad, Arash (McGill University) | Srivastava, Biplav (IBM Research) | Tesauro, Gerald (IBM Research) | Uceda-Sosa, Rosario (IBM Research) | Broeck, Guy Van den (Katholieke Universiteit Leuven) | Otterlo, Martijn van (Radboud University Nijmegen) | Wallace, Byron C. (University of Texas) | Weng, Paul (Pierre and Marie Curie University) | Wiens, Jenna (University of Michigan) | Zhang, Jie (Nanyang Technological University)
The AAAI-14 Workshop program was held Sunday and Monday, July 27โ28, 2012, at the Quรฉbec City Convention Centre in Quรฉbec, Canada. Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities โ Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.
Towards Cognitive Automation of Data Science
Biem, Alain (IBM Research) | Butrico, Maria (IBM Research) | Feblowitz, Mark (IBM Research) | Klinger, Tim (IBM Research) | Malitsky, Yuri (IBM Research) | Ng, Kenney (IBM Research) | Perer, Adam (IBM Research) | Reddy, Chandra (IBM Research) | Riabov, Anton (IBM Research) | Samulowitz, Horst (IBM Research) | Sow, Daby (IBM Research) | Tesauro, Gerald (IBM Research) | Turaga, Deepak (IBM Research)
A Data Scientist typically performs a number of tedious and time-consuming steps to derive insight from a raw data set. The process usually starts with data ingestion, cleaning, and transformation (e.g. outlier removal, missing value imputation), then proceeds to model building, and finally a presentation of predictions that align with the end-users objectives and preferences. It is a long, complex, and sometimes artful process requiring substantial time and effort, especially because of the combinatorial explosion in choices of algorithms (and platforms), their parameters, and their compositions. Tools that can help automate steps in this process have the potential to accelerate the time-to-delivery of useful results, expand the reach of data science to non-experts, and offer a more systematic exploration of the available options. This work presents a step towards this goal.
Effect of Spatial Pooler Initialization on Column Activity in Hierarchical Temporal Memory
Leake, Mackenzie (Scripps College) | Xia, Liyu (University of Chicago) | Rocki, Kamil (IBM Research) | Imaino, Wayne (IBM Research)
In the Hierarchical Temporal Memory (HTM) paradigm the effect of overlap between inputs on the activation of columns in the spatial pooler is studied. Numerical results suggest that similar inputs are represented by similar sets of columns and dissimilar inputs are represented by dissimilar sets of columns. It is shown that the spatial pooler produces these results under certain conditions for the connectivity and proximal thresholds at initialization. Qualitative arguments about the learning dynamics of the spatial pooler are then discussed.
Semantic Lexicon Induction from Twitter with Pattern Relatedness and Flexible Term Length
Qadir, Ashequl ( University of Utah ) | Mendes, Pablo N. (IBM Research) | Gruhl, Daniel (IBM Research) | Lewis, Neal (IBM Research)
With the rise of social media, learning from informal text has become increasingly important. We present a novel semantic lexicon induction approach that is able to learn new vocabulary from social media. Our method is robust to the idiosyncrasies of informal and open-domain text corpora. Unlike previous work, it does not impose restrictions on the lexical features of candidate terms โ e.g. by restricting entries to nouns or noun phrases โwhile still being able to accurately learn multiword phrases of variable length. Starting with a few seed terms for a semantic category, our method first explores the context around seed terms in a corpus, and identifies context patterns that are relevant to the category. These patterns are used to extract candidate terms โ i.e. multiword segments that are further analyzed to ensure meaningful term boundary segmentation. We show that our approach is able to learn high quality semantic lexicons from informally written social media text of Twitter, and can achieve accuracy as high as 92% in the top 100 learned category members.
Cognitive Master Teacher
Krishnapuram, Raghu (IBM Research) | Lastras, Luis A (IBM Watson Group) | Nitta, Satya (IBM Research)
The โCognitive Master Teacherโ is a result of discussions with teachers, members of educational institutions, government bodies and other thought leaders in the United States who have helped us shape its the requirements. It is conceived as a cloud-based and mobile-accessible personal agent that is readily available for teachers to use at anytime and assist them with various issues related to day-to-day teaching activities as well as professional development.
Budgeted Prediction with Expert Advice
Amin, Kareem (University of Pennsylvania) | Kale, Satyen (Yahoo! Labs) | Tesauro, Gerald (IBM Research) | Turaga, Deepak (IBM Research)
We consider a budgeted variant of the problem of learning from expert advice with N experts. Each queried expert incurs a cost and there is a given budget B on the total cost of experts that can be queried in any prediction round. We provide an online learning algorithm for this setting with regret after T prediction rounds bounded by O(sqrt(C log(N)T/B)), where C is the total cost of all experts. We complement this upper bound with a nearly matching lower bound Omega(sqrt(CT/B)) on the regret of any algorithm for this problem. We also provide experimental validation of our algorithm.
Novel Mechanisms for Online Crowdsourcing with Unreliable, Strategic Agents
Chandra, Praphul (Hewlett Packard, Indian Institute of Science) | Narahari, Yadati (Indian Institute of Science) | Mandal, Debmalya (Harvard University) | Dey, Prasenjit (IBM Research)
Motivated by current day crowdsourcing platforms and emergence of online labor markets, this work addresses the problem of task allocation and payment decisions when unreliable and strategic workers arrive over time to work on tasks which must be completed within a deadline. We consider the following scenario: a requester has a set of tasks that must be completed before a deadline; agents (aka crowd workers) arrive over time and it is required to make sequential decisions regarding task allocation and pricing. Agents may have different costs for providing service and these costs are private information of the agents. We assume that agents are not strategic about their arrival times but could be strategic about their costs of service. In addition, agents could be unreliable in the sense of not being able to complete the assigned tasks within the allocated time; these tasks must then be reallocated to other agents to ensure ontime completion of the set of tasks by the deadline. For this setting, we propose two mechanisms: a DPM (DynamicPrice Mechanism) and an ABM (Auction Based Mechanism). Both mechanisms are dominant strategy incentive compatible, budget feasible, and also satisfy ex-post individual rationality for agents who complete the allocated tasks. These mechanisms can be implemented in current day crowdsourcing platforms with minimal changes to the current interaction model.
Predisaster Preparation of Transportation Networks
Schichl, Hermann (University of Vienna) | Sellmann, Meinolf (IBM Research)
We develop a new approach for a pre-disaster planning problem which consists in computing an optimal investment plan to strengthen a transportation network, given that a future disaster probabilistically destroys links in the network. We show how the problem can be formulated as a non-linear integer program and devise an AI algorithm to solve it. In particular, we introduce a new type of extreme resource constraint and develop a practically efficient propagation algorithm for it. Experiments show several orders of magnitude improvements over existing approaches, allowing us to close an existing real-world benchmark and to solve to optimality other, more challenging benchmarks.