Goto

Collaborating Authors

 Hong Kong University of Science and Technology


Learning Sparse Task Relations in Multi-Task Learning

AAAI Conferences

In multi-task learning, when the number of tasks is large, pairwise task relations exhibit sparse patterns since usually a task cannot be helpful to all of the other tasks and moreover, sparse task relations can reduce the risk of overfitting compared with the dense ones. In this paper, we focus on learning sparse task relations. Based on a regularization framework which can learn task relations among multiple tasks, we propose a SParse covAriance based mulTi-taSk (SPATS) model to learn a sparse covariance by using the โ„“ l regularization. The resulting objective function of the SPATS method is convex, which allows us to devise an alternating method to solve it. Moreover, some theoretical properties of the proposed model are studied. Experiments on synthetic and real-world datasets demonstrate the effectiveness of the proposed method.


Transitive Hashing Network for Heterogeneous Multimedia Retrieval

AAAI Conferences

Hashing is widely applied to large-scale multimedia retrieval due to the storage and retrieval efficiency. Cross-modal hashing enables efficient retrieval of one modality from database relevant to a query of another modality. Existing work on cross-modal hashing assumes that heterogeneous relationship across modalities is available for learning to hash. This paper relaxes this strict assumption by only requiring heterogeneous relationship in some auxiliary dataset different from the query or database domain. We design a novel hybrid deep architecture, transitive hashing network (THN), to jointly learn cross-modal correlation from the auxiliary dataset, and align the data distributions of the auxiliary dataset with that of the query or database domain, which generates compact transitive hash codes for efficient cross-modal retrieval. Comprehensive empirical evidence validates that the proposed THN approach yields state of the art retrieval performance on standard multimedia benchmarks, i.e. NUS-WIDE and ImageNet-YahooQA.


Efficient Sparse Low-Rank Tensor Completion Using the Frank-Wolfe Algorithm

AAAI Conferences

Most tensor problems are NP-hard, and low-rank tensor completion is much more difficult than low-rank matrix completion. In this paper, we propose a time and space-efficient low-rank tensor completion algorithm by using the scaled latent nuclear norm for regularization and the Frank-Wolfe (FW) algorithm for optimization. We show that all the steps can be performed efficiently. In particular,FW's linear subproblem has a closed-form solution which can be obtained from rank-one SVD. By utilizing sparsity of the observed tensor,we only need to maintain sparse tensors and a set of small basis matrices. Experimental results show that the proposed algorithm is more accurate, much faster and more scalable than the state-of-the-art.


Relational Deep Learning: A Deep Latent Variable Model for Link Prediction

AAAI Conferences

Link prediction is a fundamental task in such areas as social network analysis, information retrieval, and bioinformatics. Usually link prediction methods use the link structures or node attributes as the sources of information. Recently, the relational topic model (RTM) and its variants have been proposed as hybrid methods that jointly model both sources of information and achieve very promising accuracy. However, the representations (features) learned by them are still not effective enough to represent the nodes (items). To address this problem, we generalize recent advances in deep learning from solely modeling i.i.d. sequences of attributes to jointly modeling graphs and non-i.i.d. sequences of attributes. Specifically, we follow the Bayesian deep learning framework and devise a hierarchical Bayesian model, called relational deep learning (RDL), to jointly model high-dimensional node attributes and link structures with layers of latent variables. Due to the multiple nonlinear transformations in RDL, standard variational inference is not applicable. We propose to utilize the product of Gaussians (PoG) structure in RDL to relate the inferences on different variables and derive a generalized variational inference algorithm for learning the variables and predicting the links. Experiments on three real-world datasets show that RDL works surprisingly well and significantly outperforms the state of the art.


Recurrent Attentional Topic Model

AAAI Conferences

In a document, the topic distribution of a sentence depends on both the topics of preceding sentences and its own content, and it is usually affected by the topics of the preceding sentences with different weights. It is natural that a document can be treated as a sequence of sentences. Most existing works for Bayesian document modeling do not take these points into consideration. To fill this gap, we propose a Recurrent Attentional Topic Model (RATM) for document embedding. The RATM not only takes advantage of the sequential orders among sentence but also use the attention mechanism to model the relations among successive sentences. In RATM, we propose a Recurrent Attentional Bayesian Process (RABP) to handle the sequences. Based on the RABP, RATM fully utilizes the sequential information of the sentences in a document. Experiments on two copora show that our model outperforms state-of-the-art methods on document modeling and classification.


Distant Domain Transfer Learning

AAAI Conferences

In this paper, we study a novel transfer learning problem termed Distant Domain Transfer Learning (DDTL). Different from existing transfer learning problems which assume that there is a close relation between the source domain and the target domain, in the DDTL problem, the target domain can be totally different from the source domain. For example, the source domain classifies face images but the target domain distinguishes plane images. Inspired by the cognitive processof human where two seemingly unrelated concepts can be connected by learning intermediate concepts gradually, we propose a Selective Learning Algorithm (SLA) to solve the DDTL problem with supervised autoencoder or supervised convolutional autoencoder as a base model for handling different types of inputs. Intuitively, the SLA algorithm selects usefully unlabeled data gradually from intermediate domains as a bridge to break the large distribution gap for transferring knowledge between two distant domains. Empirical studies on image classification problems demonstrate the effectiveness of the proposed algorithm, and on some tasks the improvement in terms of the classification accuracy is up to 17% over โ€œnon-transferโ€ methods.


Asynchronous Distributed Semi-Stochastic Gradient Optimization

AAAI Conferences

With the recent proliferation of large-scale learning problems, there have been a lot of interest on distributed machine learning algorithms, particularly those that are based on stochastic gradient descent (SGD) and its variants. However, existing algorithms either suffer from slow convergence due to the inherent variance of stochastic gradients, or have a fast linear convergence rate but at the expense of poorer solution quality. In this paper, we combine their merits by proposing a fast distributed asynchronous SGD-based algorithm with variance reduction. A constant learning rate can be used, and it is also guaranteed to converge linearly to the optimal solution. Experiments on the Google Cloud Computing Platform demonstrate that the proposed algorithm outperforms state-of-the-art distributed asynchronous algorithms in terms of both wall clock time and solution quality.


Towards Safe Semi-Supervised Learning for Multivariate Performance Measures

AAAI Conferences

Semi-supervised learning (SSL) is an important research problem in machine learning. While it is usually expected that the use of unlabeled data can improve performance, in many cases SSL is outperformed by supervised learning using only labeled data. To this end, the construction of a performance-safe SSL method has become a key issue of SSL study. To alleviate this problem, we propose in this paper the UMVP (safe semi-sUpervised learning for MultiVariate Performance measure) method, because of the need of various performance measures in practical tasks. The proposed method integrates multiple semi-supervised learners, and maximizes the worst-case performance gain to derive the final prediction. The overall problem is formulated as a maximin optimization. In oder to solve the resultant difficult maximin optimization, this paper shows that when the performance measure is the Top- k Precision, F ฮฒ score or AUC, a minimax convex relaxation of the maximin optimization can be solved efficiently. Experimental results show that the proposed method can effectively improve the safeness of SSL under multiple multivariate performance measures.


Multi-Domain Active Learning for Recommendation

AAAI Conferences

Recently, active learning has been applied to recommendation to deal with data sparsity on a single domain. In this paper, we propose an active learning strategy for recommendation to alleviate the data sparsity in a multi-domain scenario. Specifically, our proposed active learning strategy simultaneously consider both specific and independent knowledge over all domains. We use the expected entropy to measure the generalization error of the domain-specific knowledge and propose a variance-based strategy to measure the generalization error of the domain-independent knowledge. The proposed active learning strategy use a unified function to effectively combine these two measurements. We compare our strategy with five state-of-the-art baselines on five different multi-domain recommendation tasks, which are constituted by three real-world data sets. The experimental results show that our strategy performs significantly better than all the baselines and reduces human labeling efforts by at least 5.6%, 8.3%, 11.8%, 12.5% and 15.4% on the five tasks, respectively.


Multi-Stage Multi-Task Learning with Reduced Rank

AAAI Conferences

Multi-task learning (MTL) seeks to improve the generalization performance by sharing information among multiple tasks. Many existing MTL approaches aim to learn the low-rank structure on the weight matrix, which stores the model parameters of all tasks, to achieve task sharing, and as a consequence the trace norm regularization is widely used in the MTL literature. A major limitation of these approaches based on trace norm regularization is that all the singular values of the weight matrix are penalized simultaneously, leading to impaired estimation on recovering the larger singular values in the weight matrix. To address the issue, we propose a Reduced rAnk MUlti-Stage multi-tAsk learning (RAMUSA) method based on the recently proposed capped norms. Different from existing trace-norm-based MTL approaches which minimize the sum of all the singular values, the RAMUSA method uses a capped trace norm regularizer to minimize only the singular values smaller than some threshold. Due to the non-convexity of the capped trace norm, we develop a simple but well guaranteed multi-stage algorithm to learn the weight matrix iteratively. We theoretically prove that the estimation error at each stage in the proposed algorithm shrinks and finally achieves a lower upper-bound as the number of stages becomes large enough. Empirical studies on synthetic and real-world datasets demonstrate the effectiveness of the RAMUSA method in comparison with the state-of-the-art methods.