Well File:

 Google Deepmind


Learning Robust Options

AAAI Conferences

Robust reinforcement learning aims to produce policies that have strong guarantees even in the face of environments/transition models whose parameters have strong uncertainty. Existing work uses value-based methods and the usual primitive action setting. In this paper, we propose robust methods for learning temporally abstract actions, in the framework of options. We present a Robust Options Policy Iteration (ROPI) algorithm with convergence guarantees, which learns options that are robust to model uncertainty. We utilize ROPI to learn robust options with the Robust Options Deep Q Network (RO-DQN) that solves multiple tasks and mitigates model misspecification due to model uncertainty. We present experimental results which suggest that policy iteration with linear features may have an inherent form of robustness when using coarse feature representations. In addition, we present experimental results which demonstrate that robustness helps policy iteration implemented on top of deep neural networks to generalize over a much broader range of dynamics than non-robust policy iteration.


General Video Game AI: Competition, Challenges and Opportunities

AAAI Conferences

The General Video Game AI framework and competition pose the problem of creating artificial intelligence that can play a wide, and in principle unlimited, range of games. Concretely, it tackles the problem of devising an algorithm that is able to play any game it is given, even if the game is not known a priori. This area of study can be seen as an approximation of General Artificial Intelligence, with very little room for game-dependent heuristics. This short paper summarizes the motivation, infrastructure, results and future plans of General Video Game AI, stressing the findings and first conclusions drawn after two editions of our competition, and outlining our future plans.