DePaul University
Recommender Systems: An Overview
Burke, Robin (DePaul University) | Felfernig, Alexander (Graz University of Technology) | Göker, Mehmet H. (Strands Labs, Inc.)
Recommender systems are tools for interacting with large and complex information spaces. The field, christened in 1995, has grown enormously in the variety of problems addressed and techniques employed, as well as in its practical applications. Recommender systems research has incorporated a wide variety of artificial intelligence techniques including machine learning, data mining, user modeling, case-based reasoning, and constraint satisfaction, among others. The purpose of the articles in this special issue is to take stock of the current landscape of recommender systems research and identify directions the field is now taking.
Context-Aware Recommender Systems
Adomavicius, Gediminas (University of Minnesota) | Mobasher, Bamshad (DePaul University) | Ricci, Francesco (Free University of Bozen-Bolzano) | Tuzhilin, Alexander (New York University)
Context-aware recommender systems (CARS) generate more relevant recommendations by adapting them to the specific contextual situation of the user. This article explores how contextual information can be used to create more intelligent and useful recommender systems. It provides an overview of the multifaceted notion of context, discusses several approaches for incorporating contextual information in recommendation process, and illustrates the usage of such approaches in several application areas where different types of contexts are exploited. The article concludes by discussing the challenges and future research directions for context-aware recommender systems.
Recommender Systems: An Overview
Burke, Robin (DePaul University) | Felfernig, Alexander (Graz University of Technology) | Göker, Mehmet H. (Strands Labs, Inc.)
Recommender systems are tools for interacting with large and complex information spaces. They provide a personalized view of such spaces, prioritizing items likely to be of interest to the user. The field, christened in 1995, has grown enormously in the variety of problems addressed and techniques employed, as well as in its practical applications. Recommender systems research has incorporated a wide variety of artificial intelligence techniques including machine learning, data mining, user modeling, case-based reasoning, and constraint satisfaction, among others. Personalized recommendations are an important part of many on-line e-commerce applications such as Amazon.com, Netflix, and Pandora. This wealth of practical application experience has provided inspiration to researchers to extend the reach of recommender systems into new and challenging areas. The purpose of the articles in this special issue is to take stock of the current landscape of recommender systems research and identify directions the field is now taking. This article provides an overview of the current state of the field and introduces the various articles in the special issue.
Context-Aware Recommender Systems
Adomavicius, Gediminas (University of Minnesota) | Mobasher, Bamshad (DePaul University) | Ricci, Francesco (Free University of Bozen-Bolzano) | Tuzhilin, Alexander (New York University)
Context-aware recommender systems (CARS) generate more relevant recommendations by adapting them to the specific contextual situation of the user. This article explores how contextual information can be used to create more intelligent and useful recommender systems. It provides an overview of the multifaceted notion of context, discusses several approaches for incorporating contextual information in recommendation process, and illustrates the usage of such approaches in several application areas where different types of contexts are exploited. The article concludes by discussing the challenges and future research directions for context-aware recommender systems.
Recommendation in the Social Web
Burke, Robin (DePaul University) | Gemmell, Jonathan (Depaul University) | Hotho, Andreas (University of Wuerzburg) | Jäschke, Robert (University of Kassel)
Recommender systems are a means of personalizing the presentation of information to ensure that users see the items most relevant to them. The social web has added new dimensions to the way people interact on the Internet, placing the emphasis on user-generated content. Users in social networks create photos, videos and other artifacts, collaborate with other users, socialize with their friends and share their opinions online. This outpouring of material has brought increased attention to recommender systems, as a means of managing this vast universe of content. At the same time, the diversity and complexity of the data has meant new challenges for researchers in recommendation. This article describes the nature of recommendation research in social web applications and provides some illustrative examples of current research directions and techniques. It is difficult to overstate the impact of the social web. This new breed of social applications is reshaping nearly every human activity from the way people watch movies to how they overthrow governments. Facebook allows its members to maintain friendships whether they live next door or on another continent. With Twitter, users from celebrities to ordinary folks can launch their 140 character messages out to a diverse horde of ‘‘followers.” Flickr and YouTube users upload their personal media to share with the world, while Wikipedia editors collaborate on the world’s largest encyclopedia.
Recommender Systems in Requirements Engineering
Mobasher, Bamshad (DePaul University) | Cleland-Huang, Jane (DePaul University)
Requirements engineering in large-scaled industrial, government, and international projects can be a highly complex process involving thousands, or even hundreds of thousands of potentially distributed stakeholders. The process can result in massive amounts of noisy and semistructured data that must be analyzed and distilled in order to extract useful requirements. As a result, many human intensive tasks in requirements elicitation, analysis, and management processes can be augmented and supported through the use of recommender system and machine learning techniques. In this article we describe several areas in which recommendation technologies have been applied to the requirements engineering domain, namely stakeholder identification, domain analysis, requirements elicitation, and decision support across several requirements analysis and prioritization tasks. We also highlight ongoing challenges and opportunities for applying recommender systems in the requirements engineering domain.
Special Track on Cognition and Artificial Intelligence
Briner, Stephen W. (DePaul University) | Duran, Nicholas (The University of Memphis)
Cognitive psychology and artificial intelligence have provided valuable insights into the scope and limitations of human thought and behavior. As technology becomes more of a fixture in our daily routines, advances in artificial intelligence increasingly impact how we think and interact with others. This track is motivated by these two fronts of research: the basic theoretical integration of cognition and artificial intelligence; and its application to real-world domains. As such, the track will cover a wide range of issues. We welcomed submissions in any area where cognition and computers are mutually explored, but especially encouraged work in how humans and computers communicate or how artificial intelligence facilitates communication.
AAAI 2008 Workshop Reports
Anand, Sarabjot Singh (University of Warwick) | Bunescu, Razvan C. (Ohio University) | Carvalho, Vitor R. (Microsoft Live Labs) | Chomicki, Jan (University of Buffalo) | Conitzer, Vincent (Duke University) | Cox, Michael T. (BBN Technologies) | Dignum, Virginia (Utrecht University) | Dodds, Zachary (Harvey Mudd College) | Dredze, Mark (University of Pennsylvania) | Furcy, David (University of Wisconsin Oshkosh) | Gabrilovich, Evgeniy (Yahoo! Research) | Göker, Mehmet H. (PricewaterhouseCoopers) | Guesgen, Hans Werner (Massey University) | Hirsh, Haym (Rutgers University) | Jannach, Dietmar (Dortmund University of Technology) | Junker, Ulrich (ILOG) | Ketter, Wolfgang (Erasmus University) | Kobsa, Alfred (University of California, Irvine) | Koenig, Sven (University of Southern California) | Lau, Tessa (IBM Almaden Research Center) | Lewis, Lundy (Southern New Hampshire University) | Matson, Eric (Purdue University) | Metzler, Ted (Oklahoma City University) | Mihalcea, Rada (University of North Texas) | Mobasher, Bamshad (DePaul University) | Pineau, Joelle (McGill University) | Poupart, Pascal (University of Waterloo) | Raja, Anita (University of North Carolina at Charlotte) | Ruml, Wheeler (University of New Hampshire) | Sadeh, Norman M. (Carnegie Mellon University) | Shani, Guy (Microsoft Research) | Shapiro, Daniel (Applied Reactivity, Inc.) | Smith, Trey (Carnegie Mellon University West) | Taylor, Matthew E. (University of Southern California) | Wagstaff, Kiri (Jet Propulsion Laboratory) | Walsh, William (CombineNet) | Zhou, Ron (Palo Alto Research Center)
AAAI 2008 Workshop Reports
Anand, Sarabjot Singh (University of Warwick) | Bunescu, Razvan C. (Ohio University) | Carvalho, Vitor R. (Microsoft Live Labs) | Chomicki, Jan (University of Buffalo) | Conitzer, Vincent (Duke University) | Cox, Michael T. (BBN Technologies) | Dignum, Virginia (Utrecht University) | Dodds, Zachary (Harvey Mudd College) | Dredze, Mark (University of Pennsylvania) | Furcy, David (University of Wisconsin Oshkosh) | Gabrilovich, Evgeniy (Yahoo! Research) | Göker, Mehmet H. (PricewaterhouseCoopers) | Guesgen, Hans Werner (Massey University) | Hirsh, Haym (Rutgers University) | Jannach, Dietmar (Dortmund University of Technology) | Junker, Ulrich (ILOG) | Ketter, Wolfgang (Erasmus University) | Kobsa, Alfred (University of California, Irvine) | Koenig, Sven (University of Southern California) | Lau, Tessa (IBM Almaden Research Center) | Lewis, Lundy (Southern New Hampshire University) | Matson, Eric (Purdue University) | Metzler, Ted (Oklahoma City University) | Mihalcea, Rada (University of North Texas) | Mobasher, Bamshad (DePaul University) | Pineau, Joelle (McGill University) | Poupart, Pascal (University of Waterloo) | Raja, Anita (University of North Carolina at Charlotte) | Ruml, Wheeler (University of New Hampshire) | Sadeh, Norman M. (Carnegie Mellon University) | Shani, Guy (Microsoft Research) | Shapiro, Daniel (Applied Reactivity, Inc.) | Smith, Trey (Carnegie Mellon University West) | Taylor, Matthew E. (University of Southern California) | Wagstaff, Kiri (Jet Propulsion Laboratory) | Walsh, William (CombineNet) | Zhou, Ron (Palo Alto Research Center)
AAAI was pleased to present the AAAI-08 Workshop Program, held Sunday and Monday, July 13–14, in Chicago, Illinois, USA. The program included the following 15 workshops: Advancements in POMDP Solvers; AI Education Workshop Colloquium; Coordination, Organizations, Institutions, and Norms in Agent Systems, Enhanced Messaging; Human Implications of Human-Robot Interaction; Intelligent Techniques for Web Personalization and Recommender Systems; Metareasoning: Thinking about Thinking; Multidisciplinary Workshop on Advances in Preference Handling; Search in Artificial Intelligence and Robotics; Spatial and Temporal Reasoning; Trading Agent Design and Analysis; Transfer Learning for Complex Tasks; What Went Wrong and Why: Lessons from AI Research and Applications; and Wikipedia and Artificial Intelligence: An Evolving Synergy.