Goto

Collaborating Authors

 Carnegie Mellon University


Fair Rent Division on a Budget

AAAI Conferences

The standard approach to fair rent division assumes that agents have quasi-linear utilities, and seeks allocations that are envy free; it underlies an algorithm that is widely used in practice. However, this approach does not take budget constraints into account, and, therefore, may assign agents to rooms they cannot afford. By contrast, we design a polynomial-time algorithm that takes budget constraints as part of its input; it determines whether there exist envy-free allocations that satisfy the budget constraints, and, if so, computes one that optimizes an additional criterion of justice. In particular, this gives a polynomial-time implementation of the budget-constrained maximin solution, where the maximization objective is the minimum utility of any agent. We show that, like its non-budget-constrained counterpart, this solution is unique in terms of utilities (when it exists), and satisfies additional desirable properties.


Safe Reinforcement Learning via Formal Methods: Toward Safe Control Through Proof and Learning

AAAI Conferences

Formal verification provides a high degree of confidence in safe system operation, but only if reality matches the verified model. Although a good model will be accurate most of the time, even the best models are incomplete. This is especially true in Cyber-Physical Systems because high-fidelity physical models of systems are expensive to develop and often intractable to verify. Conversely, reinforcement learning-based controllers are lauded for their flexibility in unmodeled environments, but do not provide guarantees of safe operation. This paper presents an approach for provably safe learning that provides the best of both worlds: the exploration and optimization capabilities of learning along with the safety guarantees of formal verification. Our main insight is that formal verification combined with verified runtime monitoring can ensure the safety of a learning agent. Verification results are preserved whenever learning agents limit exploration within the confounds of verified control choices as long as observed reality comports with the model used for off-line verification. When a model violation is detected, the agent abandons efficiency and instead attempts to learn a control strategy that guides the agent to a modeled portion of the state space. We prove that our approach toward incorporating knowledge about safe control into learning systems preserves safety guarantees, and demonstrate that we retain the empirical performance benefits provided by reinforcement learning. We also explore various points in the design space for these justified speculative controllers in a simple model of adaptive cruise control model for autonomous cars.


Semi-Supervised Bayesian Attribute Learning for Person Re-Identification

AAAI Conferences

Person re-identification (re-ID) tasks aim to identify the same person in multiple images captured from non-overlapping camera views. Most previous re-ID studies have attempted to solve this problem through either representation learning or metric learning, or by combining both techniques. Representation learning relies on the latent factors or attributes of the data. In most of these works, the dimensionality of the factors/attributes has to be manually determined for each new dataset. Thus, this approach is not robust. Metric learning optimizes a metric across the dataset to measure similarity according to distance. However, choosing the optimal method for computing these distances is data dependent, and learning the appropriate metric relies on a sufficient number of pair-wise labels. To overcome these limitations, we propose a novel algorithm for person re-ID, called semi-supervised Bayesian attribute learning. We introduce an Indian Buffet Process to identify the priors of the latent attributes. The dimensionality of attributes factors is then automatically determined by nonparametric Bayesian learning. Meanwhile, unlike traditional distance metric learning, we propose a re-identification probability distribution to describe how likely it is that a pair of images contains the same person. This technique relies solely on the latent attributes of both images. Moreover, pair-wise labels that are not known can be estimated from pair-wise labels that are known, making this a robust approach for semi-supervised learning. Extensive experiments demonstrate the superior performance of our algorithm over several state-of-the-art algorithms on small-scale datasets and comparable performance on large-scale re-ID datasets.


Algorithms for Generalized Topic Modeling

AAAI Conferences

Recently there has been significant activity in developing algorithms with provable guarantees for topic modeling. In this work we consider a broad generalization of the traditional topic modeling framework, where we no longer assume that words are drawn i.i.d. and instead view a topic as a complex distribution over sequences of paragraphs. Since one could not hope to even represent such a distribution in general (even if paragraphs are given using some natural feature representation), we aim instead to directly learn a predictor that given a new document, accurately predicts its topic mixture, without learning the distributions explicitly. We present several natural conditions under which one can do this from unlabeled data only, and give efficient algorithms to do so, also discussing issues such as noise tolerance and sample complexity. More generally, our model can be viewed as a generalization of the multi-view or co-training setting in machine learning.


Memory Fusion Network for Multi-view Sequential Learning

AAAI Conferences

Multi-view sequential learning is a fundamental problem in machine learning dealing with multi-view sequences. In a multi-view sequence, there exists two forms of interactions between different views: view-specific interactions and cross-view interactions. In this paper, we present a new neural architecture for multi-view sequential learning called the Memory Fusion Network (MFN) that explicitly accounts for both interactions in a neural architecture and continuously models them through time. The first component of the MFN is called the System of LSTMs, where view-specific interactions are learned in isolation through assigning an LSTM function to each view. The cross-view interactions are then identified using a special attention mechanism called the Delta-memory Attention Network (DMAN) and summarized through time with a Multi-view Gated Memory. Through extensive experimentation, MFN is compared to various proposed approaches for multi-view sequential learning on multiple publicly available benchmark datasets. MFN outperforms all the multi-view approaches. Furthermore, MFN outperforms all current state-of-the-art models, setting new state-of-the-art results for all three multi-view datasets.


Multi-Task Learning For Parsing The Alexa Meaning Representation Language

AAAI Conferences

The Alexa Meaning Representation Language (AMRL) is a compositional graph-based semantic representation that includes fine-grained types, properties, actions, and roles and can represent a wide variety of spoken language. ย AMRL increases the ability of virtual assistants to represent more complex requests, including logical and conditional statements as well as ones with nested clauses. Due to this representational capacity, the acquisition of large scale data resources is challenging, which limits the accuracy ofย resulting models. This paper has two primary contributions. First, we develop aย linearization ofย AMRL graphs along with a deep multi-task model that predictsย fine-grained types, properties, and intents. Second, we show how to jointly train a model that predicts an existing representation for spoken language understanding (SLU) along with the linearized AMRL parse. The resulting model, which leverages learned embeddings from both tasks, is able to predict the AMRLย representationย more accurately than other approaches, decreasing the errorย rates in the fullย parse by 3.56% absolute and reducing the amount of nativelyย annotated dataย needed to train accurate parsing models.


Collaborative Filtering With Social Exposure: A Modular Approach to Social Recommendation

AAAI Conferences

This paper is concerned with how to make efficient use of social information to improve recommendations. Most existing social recommender systems assume people share similar preferences with their social friends. Which, however, may not hold true due to various motivations of making online friends and dynamics of online social networks. Inspired by recent causal process based recommendations that first model user exposures towards items and then use these exposures to guide rating prediction, we utilize social information to capture user exposures rather than user preferences. We assume that people get information of products from their online friends and they do not have to share similar preferences, which is less restrictive and seems closer to reality. Under this new assumption, in this paper, we present a novel recommendation approach (named SERec) to integrate social exposure into collaborative filtering. We propose two methods to implement SERec, namely social regularization and social boosting, each with different ways to construct social exposures. Experiments on four real-world datasets demonstrate that our methods outperform the state-of-the-art methods on top-N recommendations. Further study compares the robustness and scalability of the two proposed methods.


Actionable Email Intent Modeling With Reparametrized RNNs

AAAI Conferences

Emails in the workplace are often intentional calls to action for its recipients. We propose to annotate these emails for what action its recipient will take. We argue that our approach of action-based annotation is more scalable and theory-agnostic than traditional speech-act-based email intent annotation, while still carrying important semantic and pragmatic information. We show that our action-based annotation scheme achieves good inter-annotator agreement. We also show that we can leverage threaded messages from other domains, which exhibit comparable intents in their conversation, with domain adaptive RAINBOW (Recurrently AttentIve Neural Bag-Of-Words). On a collection of datasets consisting of IRC, Reddit, and email, our reparametrized RNNs outperform common multitask/multidomain approaches on several speech act related tasks. We also experiment with a minimally supervised scenario of email recipient action classification, and find the reparametrized RNNs learn a useful representation.


A Voting-Based System for Ethical Decision Making

AAAI Conferences

We present a general approach to automating ethical decisions, drawing on machine learning and computational social choice. In a nutshell, we propose to learn a model of societal preferences, and, when faced with a specific ethical dilemma at runtime, efficiently aggregate those preferences to identify a desirable choice. We provide a concrete algorithm that instantiates our approach; some of its crucial steps are informed by a new theory of swap-dominance efficient voting rules. Finally, we implement and evaluate a system for ethical decision making in the autonomous vehicle domain, using preference data collected from 1.3 million people through the Moral Machine website.


Customized Nonlinear Bandits for Online Response Selection in Neural Conversation Models

AAAI Conferences

Dialog response selection is an important step towards natural response generation in conversational agents. Existing work on neural conversational models mainly focuses on offline supervised learning using a large set of context-response pairs. In this paper, we focus on online learning of response selection in retrieval-based dialog systems. We propose a contextual multi-armed bandit model with a nonlinear reward function that uses distributed representation of text for online response selection. A bidirectional LSTM is used to produce the distributed representations of dialog context and responses, which serve as the input to a contextual bandit. In learning the bandit, we propose a customized Thompson sampling method that is applied to a polynomial feature space in approximating the reward. Experimental results on the Ubuntu Dialogue Corpus demonstrate significant performance gains of the proposed method over conventional linear contextual bandits. Moreover, we report encouraging response selection performance of the proposed neural bandit model using the Recall@k metric for a small set of online training samples.