Arizona State University
Learning Generalized Reactive Policies using Deep Neural Networks
Groshev, Edward (University of California, Berkeley) | Tamar, Aviv (University of California, Berkeley) | Goldstein, Maxwell (Princeton University) | Srivastava, Siddharth (Arizona State University) | Abbeel, Pieter (University of California Berkeley)
We present a new approach to learning for planning, where knowledge acquired while solving a given set of planning problems is used to plan faster in related, but new problem instances. We show that a deep neural network can be used to learn and represent a generalized reactive policy (GRP) that maps a problem instance and a state to an action, and that the learned GRPs efficiently solve large classes of challenging problem instances. In contrast to prior efforts in this direction, our approach significantly reduces the dependence of learning on handcrafted domain knowledge or feature selection. Instead, the GRP is trained from scratch using a set of successful execution traces. We show that our approach can also be used to automatically learn a heuristic function that can be used in directed search algorithms. We evaluate our approach using an extensive suite of experiments on two challenging planning problem domains and show that our approach facilitates learning complex decision making policies and powerful heuristic functions with minimal human input
Sparse Modeling-Based Sequential Ensemble Learning for Effective Outlier Detection in High-Dimensional Numeric Data
Pang, Guansong (University of Technology Sydney) | Cao, Longbing (University of Technology Sydney) | Chen, Ling (University of Technology Sydney) | Lian, Defu (University of Electronic Science and Technology of China) | Liu, Huan (Arizona State University)
The large proportion of irrelevant or noisy features in real-life high-dimensional data presents a significant challenge to subspace/feature selection-based high-dimensional outlier detection (a.k.a. outlier scoring) methods. These methods often perform the two dependent tasks: relevant feature subset search and outlier scoring independently, consequently retaining features/subspaces irrelevant to the scoring method and downgrading the detection performance. This paper introduces a novel sequential ensemble-based framework SEMSE and its instance CINFO to address this issue. SEMSE learns the sequential ensembles to mutually refine feature selection and outlier scoring by iterative sparse modeling with outlier scores as the pseudo target feature. CINFO instantiates SEMSE by using three successive recurrent components to build such sequential ensembles. Given outlier scores output by an existing outlier scoring method on a feature subset, CINFO first defines a Cantelli's inequality-based outlier thresholding function to select outlier candidates with a false positive upper bound. It then performs lasso-based sparse regression by treating the outlier scores as the target feature and the original features as predictors on the outlier candidate set to obtain a feature subset that is tailored for the outlier scoring method. Our experiments show that two different outlier scoring methods enabled by CINFO (i) perform significantly better on 11 real-life high-dimensional data sets, and (ii) have much better resilience to noisy features, compared to their bare versions and three state-of-the-art competitors. The source code of CINFO is available at https://sites.google.com/site/gspangsite/sourcecode.
Explicit Reasoning over End-to-End Neural Architectures for Visual Question Answering
Aditya, Somak (Arizona State University) | Yang, Yezhou (Arizona State University) | Baral, Chitta (Arizona State University)
Many vision and language tasks require commonsense reasoning beyond data-driven image and natural language processing. Here we adopt Visual Question Answering (VQA) as an example task, where a system is expected to answer a question in natural language about an image. Current state-of-the-art systems attempted to solve the task using deep neural architectures and achieved promising performance. However, the resulting systems are generally opaque and they struggle in understanding questions for which extra knowledge is required. In this paper, we present an explicit reasoning layer on top of a set of penultimate neural network based systems. The reasoning layer enables reasoning and answering questions where additional knowledge is required, and at the same time provides an interpretable interface to the end users. Specifically, the reasoning layer adopts a Probabilistic Soft Logic (PSL) based engine to reason over a basket of inputs: visual relations, the semantic parse of the question, and background ontological knowledge from word2vec and ConceptNet. Experimental analysis of the answers and the key evidential predicates generated on the VQA dataset validate our approach.
Exploiting Emotion on Reviews for Recommender Systems
Meng, Xuying (Institute of Computing Technology, Chinese Academy of Sciences) | Wang, Suhang (Arizona State University) | Liu, Huan (Arizona State University) | Zhang, Yujun (Institute of Computing Technology, Chinese Academy of Sciences.)
Review history is widely used by recommender systems to infer users' preferences and help find the potential interests from the huge volumes of data, whereas it also brings in great concerns on the sparsity and cold-start problems due to its inadequacy. Psychology and sociology research has shown that emotion information is a strong indicator for users' preferences. Meanwhile, with the fast development of online services, users are willing to express their emotion on others' reviews, which makes the emotion information pervasively available. Besides, recent research shows that the number of emotion on reviews is always much larger than the number of reviews. Therefore incorporating emotion on reviews may help to alleviate the data sparsity and cold-start problems for recommender systems. In this paper, we provide a principled and mathematical way to exploit both positive and negative emotion on reviews, and propose a novel framework MIRROR, exploiting eMotIon on Reviews for RecOmmendeR systems from both global and local perspectives. Empirical results on real-world datasets demonstrate the effectiveness of our proposed framework and further experiments are conducted to understand how emotion on reviews works for the proposed framework.
IMS-DTM: Incremental Multi-Scale Dynamic Topic Models
Chen, Xilun (Arizona State University) | Candan, K. Selcuk (Arizona State University) | Sapino, Maria Luisa (University of Torino)
Dynamic topic models (DTM) are commonly used for mining latent topics in evolving web corpora. In this paper, we note that a major limitation of the conventional DTM based models is that they assume a predetermined and fixed scale of topics. In reality, however, topics may have varying spans and topics of multiple scales can co-exist in a single web or social media data stream. Therefore, DTMs that assume a fixed epoch length may not be able to effectively capture latent topics and thus negatively affect accuracy. In this paper, we propose a Multi-Scale Dynamic Topic Model (MS-DTM) and a complementary Incremental Multi-Scale Dynamic Topic Model (IMS-DTM) inference method that can be used to capture latent topics and their dynamics simultaneously, at different scales. In this model, topic specific feature distributions are generated based on a multi-scale feature distribution of the previous epochs; moreover, multiple scales of the current epoch are analyzed together through a novel multi-scale incremental Gibbs sampling technique. We show that the proposed model significantly improves efficiency and effectiveness compared to the single scale dynamic DTMs and prior models that consider only multiple scales of the past.
Personalized Privacy-Preserving Social Recommendation
Meng, Xuying (Institute of Computing Technology, Chinese Academy of Sciences) | Wang, Suhang (Arizona State University) | Shu, Kai (Arizona State University) | Li, Jundong (Arizona State University) | Chen, Bo (Michigan Technological University) | Liu, Huan (Arizona State University) | Zhang, Yujun (Institute of Computing Technology, Chinese Academy of Sciences)
Privacy leakage is an important issue for social recommendation. Existing privacy preserving social recommendation approaches usually allow the recommender to fully control users' information. This may be problematic since the recommender itself may be untrusted, leading to serious privacy leakage. Besides, building social relationships requires sharing interests as well as other private information, which may lead to more privacy leakage. Although sometimes users are allowed to hide their sensitive private data using privacy settings, the data being shared can still be abused by the adversaries to infer sensitive private information. Supporting social recommendation with least privacy leakage to untrusted recommender and other users (i.e., friends) is an important yet challenging problem. In this paper, we aim to address the problem of achieving privacy-preserving social recommendation under personalized privacy settings. We propose PrivSR, a novel framework for privacy-preserving social recommendation, in which users can model ratings and social relationships privately. Meanwhile, by allocating different noise magnitudes to personalized sensitive and non-sensitive ratings, we can protect users' privacy against the untrusted recommender and friends. Theoretical analysis and experimental evaluation on real-world datasets demonstrate that our framework can protect users' privacy while being able to retain effectiveness of the underlying recommender system.
Context Aware Conversational Understanding for Intelligent Agents With a Screen
Naik, Vishal Ishwar (Arizona State University) | Metallinou, Angeliki (Amazon) | Goel, Rahul (Amazon)
We describe an intelligent context-aware conversational system that incorporates screen context information to service multimodal user requests. Screen content is used for disambiguation of utterances that refer to screen objects and for enabling the user to act upon screen objects using voice commands. We propose a deep learning architecture that jointly models the user utterance and the screen and incorporates detailed screen content features. Our model is trained to optimize end to end semantic accuracy across contextual and non-contextual functionality, therefore learns the desired behavior directly from the data. We show that this approach outperforms a rule-based alternative, and can be extended in a straightforward manner to new contextual use cases. We perform detailed evaluation of contextual and non-contextual use cases and show that our system displays accurate contextual behavior without degrading the performance of non-contextual user requests.
Attend and Diagnose: Clinical Time Series Analysis Using Attention Models
Song, Huan (Arizona State University) | Rajan, Deepta (IBM Almaden Research Center) | Thiagarajan, Jayaraman J. (Lawrence Livermore National Labs) | Spanias, Andreas (Arizona State University)
With widespread adoption of electronic health records, there is an increased emphasis for predictive models that can effectively deal with clinical time-series data. Powered by Recurrent Neural Network (RNN) architectures with Long Short-Term Memory (LSTM) units, deep neural networks have achieved state-of-the-art results in several clinical prediction tasks. Despite the success of RNN, its sequential nature prohibits parallelized computing, thus making it inefficient particularly when processing long sequences. Recently, architectures which are based solely on attention mechanisms have shown remarkable success in transduction tasks in NLP, while being computationally superior. In this paper, for the first time, we utilize attention models for clinical time-series modeling, thereby dispensing recurrence entirely. We develop the SAnD (Simply Attend and Diagnose) architecture, which employs a masked, self-attention mechanism, and uses positional encoding and dense interpolation strategies for incorporating temporal order. Furthermore, we develop a multi-task variant of SAnD to jointly infer models with multiple diagnosis tasks. Using the recent MIMIC-III benchmark datasets, we demonstrate that the proposed approach achieves state-of-the-art performance in all tasks, outperforming LSTM models and classical baselines with hand-engineered features.
SqueezedText: A Real-Time Scene Text Recognition by Binary Convolutional Encoder-Decoder Network
Liu, Zichuan (Nanyang Technological University) | Li, Yixing (Arizona State University) | Ren, Fengbo (Arizona State University) | Goh, Wang Ling (Nanyang Technological University) | Yu, Hao (Southern University of Science and Technology)
A new approach for real-time scene text recognition is proposed in this paper. A novel binary convolutional encoder-decoder network (B-CEDNet) together with a bidirectional recurrent neural network (Bi-RNN). The B-CEDNet is engaged as a visual front-end to provide elaborated character detection, and a back-end Bi-RNN performs character-level sequential correction and classification based on learned contextual knowledge. The front-end B-CEDNet can process multiple regions containing characters using a one-off forward operation, and is trained under binary constraints with significant compression. Hence it leads to both remarkable inference run-time speedup as well as memory usage reduction. With the elaborated character detection, the back-end Bi-RNN merely processes a low dimension feature sequence with category and spatial information of extracted characters for sequence correction and classification. By training with over 1,000,000 synthetic scene text images, the B-CEDNet achieves a recall rate of 0.86, precision of 0.88 and F-score of 0.87 on ICDAR-03 and ICDAR-13. With the correction and classification by Bi-RNN, the proposed real-time scene text recognition achieves state-of-the-art accuracy while only consumes less than 1-ms inference run-time. The flow processing flow is realized on GPU with a small network size of 1.01 MB for B-CEDNet and 3.23 MB for Bi-RNN, which is much faster and smaller than the existing solutions.
DarkEmbed: Exploit Prediction With Neural Language Models
Tavabi, Nazgol (USC Information Sciences Institute) | Goyal, Palash (USC Information Sciences Institute) | Almukaynizi, Mohammed (Arizona State University) | Shakarian, Paulo (Arizona State University) | Lerman, Kristina (USC Information Sciences Institute)
Software vulnerabilities can expose computer systems to attacks by malicious actors. With the number of vulnerabilities discovered in the recent years surging, creating timely patches for every vulnerability is not always feasible. At the same time, not every vulnerability will be exploited by attackers; hence, prioritizing vulnerabilities by assessing the likelihood they will be exploited has become an important research problem. Recent works used machine learning techniques to predict exploited vulnerabilities by analyzing discussions about vulnerabilities on social media. These methods relied on traditional text processing techniques, which represent statistical features of words, but fail to capture their context. To address this challenge, we propose DarkEmbed, a neural language modeling approach that learns low dimensional distributed representations, i.e., embeddings, of darkweb/deepweb discussions to predict whether vulnerabilities will be exploited. By capturing linguistic regularities of human language, such as syntactic, semantic similarity and logic analogy, the learned embeddings are better able to classify discussions about exploited vulnerabilities than traditional text analysis methods. Evaluations demonstrate the efficacy of learned embeddings on both structured text (such as security blog posts) and unstructured text (darkweb/deepweb posts). DarkEmbed outperforms state-of-the-art approaches on the exploit prediction task with an F1-score of 0.74.