Goto

Collaborating Authors

 A*STAR


Multi-Modal Multi-Task Learning for Automatic Dietary Assessment

AAAI Conferences

We investigate the task of automatic dietary assessment: given meal images and descriptions uploaded by real users, our task is to automatically rate the meals and deliver advisory comments for improving users' diets. To address this practical yet challenging problem, which is multi-modal and multi-task in nature, an end-to-end neural model is proposed. In particular, comprehensive meal representations are obtained from images, descriptions and user information. We further introduce a novel memory network architecture to store meal representations and reason over the meal representations to support predictions. Results on a real-world dataset show that our method outperforms two strong image captioning baselines significantly.


What Happens Next? Future Subevent Prediction Using Contextual Hierarchical LSTM

AAAI Conferences

Events are typically composed of a sequence of subevents. Predicting a future subevent of an event is of great importance for many real-world applications. Most previous work on event prediction relied on hand-crafted features and can only predict events that already exist in the training data. In this paper, we develop an end-to-end model which directly takes the texts describing previous subevents as input and automatically generates a short text describing a possible future subevent. Our model captures the two-level sequential structure of a subevent sequence, namely, the word sequence for each subevent and the temporal order of subevents. In addition, our model incorporates the topics of the past subevents to make context-aware prediction of future subevents. Extensive experiments on a real-world dataset demonstrate the superiority of our model over several state-of-the-art methods.


Online ARIMA Algorithms for Time Series Prediction

AAAI Conferences

Autoregressive integrated moving average (ARIMA) is one of the most popular linear models for time series forecasting due to its nice statistical properties and great flexibility. However, its parameters are estimated in a batch manner and its noise terms are often assumed to be strictly bounded, which restricts its applications and makes it inefficient for handling large-scale real data. In this paper, we propose online learning algorithms for estimating ARIMA models under relaxed assumptions on the noise terms, which is suitable to a wider range of applications and enjoys high computational efficiency. The idea of our ARIMA method is to reformulate the ARIMA model into a task of full information online optimization (without random noise terms). As a consequence, we can online estimation of the parameters in an efficient and scalable way. Furthermore, we analyze regret bounds of the proposed algorithms, which guarantee that our online ARIMA model is provably as good as the best ARIMA model in hindsight. Finally, our encouraging experimental results further validate the effectiveness and robustness of our method.