Goto

Collaborating Authors

 scenario


Membership Inference on Text-to-image Diffusion Models via Conditional Likelihood Discrepancy

Neural Information Processing Systems

Membership inference arises in these contexts as a potential auditing method for detecting unauthorized data usage. While some efforts have been made on diffusion models, they are not applicable to text-to-image diffusion models due to the high computation overhead and enhanced generalization capabilities. In this paper, we first identify a conditional overfitting phenomenon in text-to-image diffusion models, indicating that these models tend to overfit the conditional distribution of images given the corresponding text rather than the marginal distribution of images only. Based on this observation, we derive an analytical indicator, namely Conditional Likelihood Discrepancy (CLiD), to perform membership inference, which reduces the stochasticity in estimating memorization of individual samples. Experimental results demonstrate that our method significantly outperforms previous methods across various data distributions and dataset scales. Additionally, our method shows superior resistance to overfitting mitigation strategies, such as early stopping and data augmentation.


Improving Context-Aware Preference Modeling for Language Models Nicolas Le Roux

Neural Information Processing Systems

While finetuning language models (LMs) from pairwise preferences has proven remarkably effective, the underspecified nature of natural language presents critical challenges. Direct preference feedback is uninterpretable, difficult to provide where multidimensional criteria may apply, and often inconsistent, either because it is based on incomplete instructions or provided by diverse principals. To address these challenges, we consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context. We decompose reward modeling error according to these two steps, which suggests that supervising context in addition to context-specific preference may be a viable approach to aligning models with diverse human preferences. For this to work, the ability of models to evaluate context-specific preference is critical. To this end, we contribute contextconditioned preference datasets and accompanying experiments that investigate the ability of language models to evaluate context-specific preference. We use our datasets to (1) show that existing preference models benefit from, but fail to fully consider, added context, (2) finetune a context-aware reward model with context-specific performance exceeding that of GPT-4 and Llama 3 70B on tested datasets, and (3) investigate the value of context-aware preference modeling.


Improving Generalization of Dynamic Graph Learning via Environment Prompt Kuo Yang

Neural Information Processing Systems

Out-of-distribution (OOD) generalization issue is a well-known challenge within deep learning tasks. In dynamic graphs, the change of temporal environments is regarded as the main cause of data distribution shift. While numerous OOD studies focusing on environment factors have achieved remarkable performance, they still fail to systematically solve the two issue of environment inference and utilization. In this work, we propose a novel dynamic graph learning model named EpoD based on prompt learning and structural causal model to comprehensively enhance both environment inference and utilization. Inspired by the superior performance of prompt learning in understanding underlying semantic and causal associations, we first design a self-prompted learning mechanism to infer unseen environment factors. We then rethink the role of environment variable within spatio-temporal causal structure model, and introduce a novel causal pathway where dynamic subgraphs serve as mediating variables. The extracted dynamic subgraph can effectively capture the data distribution shift by incorporating the inferred environment variables into the node-wise dependencies.


Is AI porn the next horizon in self-pleasure -- and is it ethical?

Mashable

The AI revolution is well and truly upon us. As we grapple with the ramifications of generative AI in our professional and personal worlds, it's worth remembering that its impact will be felt in even the most intimate corners of our lives -- including our private browsers. Whether you're aware of it or not, AI is coming for the porn industry. Already, there are a number of new genres emerging which make use of generative AI, such as hyper porn, a genre of erotic imagery which stretches the limits of sexuality and human anatomy to hyperbolic new heights (think: a Barbie-esque woman with three giant breasts, instead of two). There are also various iterations of'gone wild' porn, a subdivision of porn which sees users attempt to'trick' safe-for-work image generation models like Dall-E into depicting erotic scenes -- and enjoying the work-arounds and euphemisms which these tools may use to avoid depicting explicit sex.


Learning to Share in Multi-Agent Reinforcement Learning

Neural Information Processing Systems

In this paper, we study the problem of networked multi-agent reinforcement learning (MARL), where a number of agents are deployed as a partially connected network and each interacts only with nearby agents. Networked MARL requires all agents to make decisions in a decentralized manner to optimize a global objective with restricted communication between neighbors over the network. Inspired by the fact that sharing plays a key role in human's learning of cooperation, we propose LToS, a hierarchically decentralized MARL framework that enables agents to learn to dynamically share reward with neighbors so as to encourage agents to cooperate on the global objective through collectives. For each agent, the high-level policy learns how to share reward with neighbors to decompose the global objective, while the low-level policy learns to optimize the local objective induced by the high-level policies in the neighborhood. The two policies form a bi-level optimization and learn alternately. We empirically demonstrate that LToS outperforms existing methods in both social dilemma and networked MARL scenarios across scales.


Beware of Road Markings: A New Adversarial Patch Attack to Monocular Depth Estimation, Hao Wang

Neural Information Processing Systems

Monocular Depth Estimation (MDE) enables the prediction of scene depths from a single RGB image, having been widely integrated into production-grade autonomous driving systems, e.g., Tesla Autopilot. Current adversarial attacks to MDE models focus on attaching an optimized adversarial patch to a designated obstacle. Although effective, this approach presents two inherent limitations: its reliance on specific obstacles and its limited malicious impact. In contrast, we propose a pioneering attack to MDE models that decouples obstacles from patches physically and deploys optimized patches on roads, thereby extending the attack scope to arbitrary traffic participants. This approach is inspired by our groundbreaking discovery: various MDE models with different architectures, trained for autonomous driving, heavily rely on road regions when predicting depths for different obstacles. Based on this discovery, we design the Adversarial Road Marking (AdvRM) attack, which camouflages patches as ordinary road markings and deploys them on roads, thereby posing a continuous threat within the environment. Experimental results from both dataset simulations and real-world scenarios demonstrate that AdvRM is effective, stealthy, and robust against various MDE models, achieving about 1.507 of Mean Relative Shift Ratio (MRSR) over 8 MDE models. The code is available at this Github Repo.


Deep Correlated Prompting for Visual Recognition with Missing Modalities

Neural Information Processing Systems

Large-scale multimodal models have shown excellent performance over a series of tasks powered by the large corpus of paired multimodal training data. Generally, they are always assumed to receive modality-complete inputs. However, this simple assumption may not always hold in the real world due to privacy constraints or collection difficulty, where models pretrained on modality-complete data easily demonstrate degraded performance on missing-modality cases. To handle this issue, we refer to prompt learning to adapt large pretrained multimodal models to handle missing-modality scenarios by regarding different missing cases as different types of input. Instead of only prepending independent prompts to the intermediate layers, we present to leverage the correlations between prompts and input features and excavate the relationships between different layers of prompts to carefully design the instructions. We also incorporate the complementary semantics of different modalities to guide the prompting design for each modality. Extensive experiments on three commonly-used datasets consistently demonstrate the superiority of our method compared to the previous approaches upon different missing scenarios. Plentiful ablations are further given to show the generalizability and reliability of our method upon different modality-missing ratios and types.


Zipper: Addressing Degeneracy in Algorithm-Agnostic Inference Geng Chen Guanghui Wang

Neural Information Processing Systems

The widespread use of black box prediction methods has sparked an increasing interest in algorithm/model-agnostic approaches for quantifying goodness-of-fit, with direct ties to specification testing, model selection and variable importance assessment. A commonly used framework involves defining a predictiveness criterion, applying a cross-fitting procedure to estimate the predictiveness, and utilizing the difference in estimated predictiveness between two models as the test statistic. However, even after standardization, the test statistic typically fails to converge to a non-degenerate distribution under the null hypothesis of equal goodness, leading to what is known as the degeneracy issue. To addresses this degeneracy issue, we present a simple yet effective device, Zipper. It draws inspiration from the strategy of additional splitting of testing data, but encourages an overlap between two testing data splits in predictiveness evaluation. Zipper binds together the two overlapping splits using a slider parameter that controls the proportion of overlap. Our proposed test statistic follows an asymptotically normal distribution under the null hypothesis for any fixed slider value, guaranteeing valid size control while enhancing power by effective data reuse. Finite-sample experiments demonstrate that our procedure, with a simple choice of the slider, works well across a wide range of settings.


HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data

Neural Information Processing Systems

Technological advances in medical data collection, such as high-throughput genomic sequencing and digital high-resolution histopathology, have contributed to the rising requirement for multimodal biomedical modelling, specifically for image, tabular and graph data. Most multimodal deep learning approaches use modality-specific architectures that are often trained separately and cannot capture the crucial cross-modal information that motivates the integration of different data sources. This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet) - a flexible multimodal fusion architecture, which: a) preserves modality-specific structural information, b) captures the cross-modal interactions and structural information in a shared latent space, c) can effectively handle missing modalities during training and inference, and d) enables intuitive model inspection by learning on the raw data input instead of opaque embeddings. We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA). HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models, substantially improving over unimodal and multimodal baselines whilst being robust in scenarios with missing modalities.


Learning Distinguishable Trajectory Representation with Contrastive Loss Tianxu Li1,2 Juan Li1 Yang Zhang

Neural Information Processing Systems

Policy network parameter sharing is a commonly used technique in advanced deep multi-agent reinforcement learning (MARL) algorithms to improve learning efficiency by reducing the number of policy parameters and sharing experiences among agents. Nevertheless, agents that share the policy parameters tend to learn similar behaviors. To encourage multi-agent diversity, prior works typically maximize the mutual information between trajectories and agent identities using variational inference. However, this category of methods easily leads to inefficient exploration due to limited trajectory visitations. To resolve this limitation, inspired by the learning of pre-trained models, in this paper, we propose a novel Contrastive Trajectory Representation (CTR) method based on learning distinguishable trajectory representations to encourage multi-agent diversity.