Goto

Collaborating Authors

 natural language


FouRA: Fourier Low Rank Adaptation

Neural Information Processing Systems

While Low-Rank Adaptation (LoRA) has proven beneficial for efficiently finetuning large models, LoRA fine-tuned text-to-image diffusion models lack diversity in the generated images, as the model tends to copy data from the observed training samples. This effect becomes more pronounced at higher values of adapter strength and for adapters with higher ranks which are fine-tuned on smaller datasets. To address these challenges, we present FouRA, a novel low-rank method that learns projections in the Fourier domain along with learning a flexible input-dependent adapter rank selection strategy. Through extensive experiments and analysis, we show that FouRA successfully solves the problems related to data copying and distribution collapse while significantly improving the generated image quality. We demonstrate that FouRA enhances the generalization of fine-tuned models thanks to its adaptive rank selection. We further show that the learned projections in the frequency domain are decorrelated and prove effective when merging multiple adapters. While FouRA is motivated for vision tasks, we also demonstrate its merits for language tasks on commonsense reasoning and GLUE benchmarks.


On the Inductive Bias of Stacking Towards Improving Reasoning

Neural Information Processing Systems

Given the increasing scale of model sizes, efficient training strategies like gradual stacking [Gong et al., 2019, Reddi et al., 2023] have garnered interest. Stacking enables efficient training by gradually growing the depth of a model in stages and using layers from a smaller model in an earlier stage to initialize the next stage. Although efficient for training, the model biases induced by such growing approaches are largely unexplored. In this work, we examine this fundamental aspect of gradual stacking, going beyond its efficiency benefits.


Even Sparser Graph Transformers

Neural Information Processing Systems

Graph Transformers excel in long-range dependency modeling, but generally require quadratic memory complexity in the number of nodes in an input graph, and hence have trouble scaling to large graphs. Sparse attention variants such as Exphormer can help, but may require high-degree augmentations to the input graph for good performance, and do not attempt to sparsify an already-dense input graph. As the learned attention mechanisms tend to use few of these edges, such highdegree connections may be unnecessary. We show (empirically and with theoretical backing) that attention scores on graphs are usually quite consistent across network widths, and use this observation to propose a two-stage procedure, which we call Spexphormer: first, train a narrow network on the full augmented graph. Next, use only the active connections to train a wider network on a much sparser graph. We establish theoretical conditions when a narrow network's attention scores can match those of a wide network, and show that Spexphormer achieves good performance with drastically reduced memory requirements on various graph datasets.


Teacher Teacher LLM LLM Teaching

Neural Information Processing Systems

Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, in human education, teaching enhances not only the students but also the teachers by fostering more rigorous and clearer reasoning, as well as deeper knowledge building. We ask: Can LLMs also learn by teaching (LbT) for better reasoning? If the answer is yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration of this question. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and bring improvements.


ScaleCom: Scalable Sparsified Gradient Compression for Communication-Efficient Distributed Training

Neural Information Processing Systems

Large-scale distributed training of Deep Neural Networks (DNNs) on state-of-the-art platforms is expected to be severely communication constrained. To overcome this limitation, numerous gradient compression techniques have been proposed and have demonstrated high compression ratios. However, most existing methods do not scale well to large scale distributed systems (due to gradient build-up) and/or fail to evaluate model fidelity (test accuracy) on large datasets. To mitigate these issues, we propose a new compression technique, Scalable Sparsified Gradient Compression (ScaleCom), that leverages similarity in the gradient distribution amongst learners to provide significantly improved scalability. Using theoretical analysis, we show that ScaleCom provides favorable convergence guarantees and is compatible with gradient all-reduce techniques. Furthermore, we experimentally demonstrate that ScaleCom has small overheads, directly reduces gradient traffic and provides high compression rates (65-400X) and excellent scalability (up to 64 learners and 8-12X larger batch sizes over standard training) across a wide range of applications (image, language, and speech) without significant accuracy loss.


2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution

Neural Information Processing Systems

Low-bit quantization has become widespread for compressing image superresolution (SR) models for edge deployment, which allows advanced SR models to enjoy compact low-bit parameters and efficient integer/bitwise constructions for storage compression and inference acceleration, respectively. However, it is notorious that low-bit quantization degrades the accuracy of SR models compared to their full-precision (FP) counterparts. Despite several efforts to alleviate the degradation, the transformer-based SR model still suffers severe degradation due to its distinctive activation distribution. In this work, we present a dual-stage lowbit post-training quantization (PTQ) method for image super-resolution, namely 2DQuant, which achieves efficient and accurate SR under low-bit quantization. The proposed method first investigates the weight and activation and finds that the distribution is characterized by coexisting symmetry and asymmetry, long tails. Specifically, we propose Distribution-Oriented Bound Initialization (DOBI), using different searching strategies to search a coarse bound for quantizers. To obtain refined quantizer parameters, we further propose Distillation Quantization Calibration (DQC), which employs a distillation approach to make the quantized model learn from its FP counterpart. Through extensive experiments on different bits and scaling factors, the performance of DOBI can reach the state-of-the-art (SOTA) while after stage two, our method surpasses existing PTQ in both metrics and visual effects.


MetaLA: Unified Optimal Linear Approximation to Softmax Attention Map

Neural Information Processing Systems

Various linear complexity models, such as Linear Transformer (LinFormer), State Space Model (SSM), and Linear RNN (LinRNN), have been proposed to replace the conventional softmax attention in Transformer structures. However, the optimal design of these linear models is still an open question. In this work, we attempt to answer this question by finding the best linear approximation to softmax attention from a theoretical perspective. We start by unifying existing linear complexity models as the linear attention form and then identify three conditions for the optimal linear attention design: i) Dynamic memory ability; ii) Static approximation ability; iii) Least parameter approximation. We find that none of the current linear models meet all three conditions, resulting in suboptimal performance. Instead, we propose Meta Linear Attention (MetaLA) as a solution that satisfies these conditions. Our experiments on Multi-Query Associative Recall (MQAR) task, language modeling, image classification, and Long-Range Arena (LRA) benchmark demonstrate that MetaLA is more effective than the existing linear models.


Faster Differentially Private Top-k Selection: A Joint Exponential Mechanism with Pruning

Neural Information Processing Systems

We study the differentially private top-k selection problem, aiming to identify a sequence of k items with approximately the highest scores from d items. Recent work by Gillenwater et al. (ICML '22) employs a direct sampling approach from the vast collection of d


Neural Cover Selection for Image Steganography

Neural Information Processing Systems

In steganography, selecting an optimal cover image--referred to as cover selection--is pivotal for effective message concealment. Traditional methods have typically employed exhaustive searches to identify images that conform to specific perceptual or complexity metrics. However, the relationship between these metrics and the actual message hiding efficacy of an image is unclear, often yielding less-than-ideal steganographic outcomes. Inspired by recent advancements in generative models, we introduce a novel cover selection framework, which involves optimizing within the latent space of pretrained generative models to identify the most suitable cover images, distinguishing itself from traditional exhaustive search methods. Our method shows significant advantages in message recovery and image quality. We also conduct an information-theoretic analysis of the generated cover images, revealing that message hiding predominantly occurs in low-variance pixels, reflecting the waterfilling algorithm's principles in parallel Gaussian channels.


Improving Context-Aware Preference Modeling for Language Models Nicolas Le Roux

Neural Information Processing Systems

While finetuning language models (LMs) from pairwise preferences has proven remarkably effective, the underspecified nature of natural language presents critical challenges. Direct preference feedback is uninterpretable, difficult to provide where multidimensional criteria may apply, and often inconsistent, either because it is based on incomplete instructions or provided by diverse principals. To address these challenges, we consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context. We decompose reward modeling error according to these two steps, which suggests that supervising context in addition to context-specific preference may be a viable approach to aligning models with diverse human preferences. For this to work, the ability of models to evaluate context-specific preference is critical. To this end, we contribute contextconditioned preference datasets and accompanying experiments that investigate the ability of language models to evaluate context-specific preference. We use our datasets to (1) show that existing preference models benefit from, but fail to fully consider, added context, (2) finetune a context-aware reward model with context-specific performance exceeding that of GPT-4 and Llama 3 70B on tested datasets, and (3) investigate the value of context-aware preference modeling.