Goto

Collaborating Authors

 continuous dr-submodular maximization


Continuous DR-submodular Maximization: Structure and Algorithms

Neural Information Processing Systems

DR-submodular continuous functions are important objectives with wide real-world applications spanning MAP inference in determinantal point processes (DPPs), and mean-field inference for probabilistic submodular models, amongst others. DR-submodularity captures a subclass of non-convex functions that enables both exact minimization and approximate maximization in polynomial time. In this work we study the problem of maximizing non-monotone DR-submodular continuous functions under general down-closed convex constraints. We start by investigating geometric properties that underlie such objectives, e.g., a strong relation between (approximately) stationary points and global optimum is proved. These properties are then used to devise two optimization algorithms with provable guarantees.


Continuous DR-submodular Maximization: Structure and Algorithms

Neural Information Processing Systems

DR-submodular continuous functions are important objectives with wide real-world applications spanning MAP inference in determinantal point processes (DPPs), and mean-field inference for probabilistic submodular models, amongst others. DR-submodularity captures a subclass of non-convex functions that enables both exact minimization and approximate maximization in polynomial time. In this work we study the problem of maximizing non-monotone DR-submodular continuous functions under general down-closed convex constraints. We start by investigating geometric properties that underlie such objectives, e.g., a strong relation between (approximately) stationary points and global optimum is proved. These properties are then used to devise two optimization algorithms with provable guarantees.


Online Continuous DR-Submodular Maximization with Long-Term Budget Constraints

arXiv.org Machine Learning

In this paper, we study a class of online optimization problems with long-term budget constraints where the objective functions are not necessarily concave (nor convex) but they instead satisfy the Diminishing Returns (DR) property. Specifically, a sequence of monotone DR-submodular objective functions $\{f_t(x)\}_{t=1}^T$ and monotone linear budget functions $\{\langle p_t,x \rangle \}_{t=1}^T$ arrive over time and assuming a total targeted budget $B_T$, the goal is to choose points $x_t$ at each time $t\in\{1,\dots,T\}$, without knowing $f_t$ and $p_t$ on that step, to achieve sub-linear regret bound while the total budget violation $\sum_{t=1}^T \langle p_t,x_t \rangle -B_T$ is sub-linear as well. Prior work has shown that achieving sub-linear regret is impossible if the budget functions are chosen adversarially. Therefore, we modify the notion of regret by comparing the agent against a $(1-\frac{1}{e})$-approximation to the best fixed decision in hindsight which satisfies the budget constraint proportionally over any window of length $W$. We propose the Online Saddle Point Hybrid Gradient (OSPHG) algorithm to solve this class of online problems. For $W=T$, we recover the aforementioned impossibility result. However, when $W=o(T)$, we show that it is possible to obtain sub-linear bounds for both the $(1-\frac{1}{e})$-regret and the total budget violation.


Optimal DR-Submodular Maximization and Applications to Provable Mean Field Inference

arXiv.org Machine Learning

Mean field inference in probabilistic models is generally a highly nonconvex problem. Existing optimization methods, e.g., coordinate ascent algorithms, can only generate local optima. In this work we propose provable mean filed methods for probabilistic log-submodular models and its posterior agreement (PA) with strong approximation guarantees. The main algorithmic technique is a new Double Greedy scheme, termed DR-DoubleGreedy, for continuous DR-submodular maximization with box-constraints. It is a one-pass algorithm with linear time complexity, reaching the optimal 1/2 approximation ratio, which may be of independent interest. We validate the superior performance of our algorithms against baseline algorithms on both synthetic and real-world datasets.