Plotting

 liu, Ting


Trends in Integration of Knowledge and Large Language Models: A Survey and Taxonomy of Methods, Benchmarks, and Applications

arXiv.org Artificial Intelligence

Large language models (LLMs) exhibit superior performance on various natural language tasks, but they are susceptible to issues stemming from outdated data and domain-specific limitations. In order to address these challenges, researchers have pursued two primary strategies, knowledge editing and retrieval augmentation, to enhance LLMs by incorporating external information from different aspects. Nevertheless, there is still a notable absence of a comprehensive survey. In this paper, we propose a review to discuss the trends in integration of knowledge and large language models, including taxonomy of methods, benchmarks, and applications. In addition, we conduct an in-depth analysis of different methods and point out potential research directions in the future. We hope this survey offers the community quick access and a comprehensive overview of this research area, with the intention of inspiring future research endeavors.


New Algorithms for Efficient High Dimensional Non-parametric Classification

Neural Information Processing Systems

This paper is about non-approximate acceleration of high dimensional nonparametric operations such as k nearest neighbor classifiers and the prediction phase of Support Vector Machine classifiers. We attempt to exploit the fact that even if we want exact answers to nonparametric queries, we usually do not need to explicitly find the datapoints close to the query, but merely need to ask questions about the properties about that set of datapoints. This offers a small amount of computational leeway, and we investigate how much that leeway can be exploited. For clarity, this paper concentrates on pure k-NN classification and the prediction phase of SVMs. We introduce new ball tree algorithms that on real-world datasets give accelerations of 2-fold up to 100-fold compared against highly optimized traditional ball-tree-based k-NN.


New Algorithms for Efficient High Dimensional Non-parametric Classification

Neural Information Processing Systems

This paper is about non-approximate acceleration of high dimensional nonparametric operations such as k nearest neighbor classifiers and the prediction phase of Support Vector Machine classifiers. We attempt to exploit the fact that even if we want exact answers to nonparametric queries, we usually do not need to explicitly find the datapoints close to the query, but merely need to ask questions about the properties about that set of datapoints. This offers a small amount of computational leeway, andwe investigate how much that leeway can be exploited. For clarity, this paper concentrates on pure k-NN classification and the prediction phaseof SVMs. We introduce new ball tree algorithms that on real-world datasets give accelerations of 2-fold up to 100-fold compared against highly optimized traditional ball-tree-based k-NN.