Plotting

 Zoubin Ghahramani


Bayesian Learning of Sum-Product Networks

Neural Information Processing Systems

Sum-product networks (SPNs) are flexible density estimators and have received significant attention due to their attractive inference properties. While parameter learning in SPNs is well developed, structure learning leaves something to be desired: Even though there is a plethora of SPN structure learners, most of them are somewhat ad-hoc and based on intuition rather than a clear learning principle. In this paper, we introduce a well-principled Bayesian framework for SPN structure learning.


Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning

Neural Information Processing Systems

Off-policy model-free deep reinforcement learning methods using previously collected data can improve sample efficiency over on-policy policy gradient techniques. On the other hand, on-policy algorithms are often more stable and easier to use. This paper examines, both theoretically and empirically, approaches to merging on-and off-policy updates for deep reinforcement learning. Theoretical results show that off-policy updates with a value function estimator can be interpolated with on-policy policy gradient updates whilst still satisfying performance bounds. Our analysis uses control variate methods to produce a family of policy gradient algorithms, with several recently proposed algorithms being special cases of this family. We then provide an empirical comparison of these techniques with the remaining algorithmic details fixed, and show how different mixing of off-policy gradient estimates with on-policy samples contribute to improvements in empirical performance. The final algorithm provides a generalization and unification of existing deep policy gradient techniques, has theoretical guarantees on the bias introduced by off-policy updates, and improves on the state-of-the-art model-free deep RL methods on a number of OpenAI Gym continuous control benchmarks.



MetaGAN: An Adversarial Approach to Few-Shot Learning

Neural Information Processing Systems

In this paper, we propose a conceptually simple and general framework called MetaGAN for few-shot learning problems. Most state-of-the-art few-shot classification models can be integrated with MetaGAN in a principled and straightforward way. By introducing an adversarial generator conditioned on tasks, we augment vanilla few-shot classification models with the ability to discriminate between real and fake data. We argue that this GAN-based approach can help few-shot classifiers to learn sharper decision boundary, which could generalize better. We show that with our MetaGAN framework, we can extend supervised few-shot learning models to naturally cope with unlabeled data. Different from previous work in semi-supervised few-shot learning, our algorithms can deal with semi-supervision at both sample-level and task-level. We give theoretical justifications of the strength of MetaGAN, and validate the effectiveness of MetaGAN on challenging few-shot image classification benchmarks.


Bayesian Learning of Sum-Product Networks

Neural Information Processing Systems

Sum-product networks (SPNs) are flexible density estimators and have received significant attention due to their attractive inference properties. While parameter learning in SPNs is well developed, structure learning leaves something to be desired: Even though there is a plethora of SPN structure learners, most of them are somewhat ad-hoc and based on intuition rather than a clear learning principle. In this paper, we introduce a well-principled Bayesian framework for SPN structure learning.


Neural Adaptive Sequential Monte Carlo

Neural Information Processing Systems

Sequential Monte Carlo (SMC), or particle filtering, is a popular class of methods for sampling from an intractable target distribution using a sequence of simpler intermediate distributions. Like other importance sampling-based methods, performance is critically dependent on the proposal distribution: a bad proposal can lead to arbitrarily inaccurate estimates of the target distribution. This paper presents a new method for automatically adapting the proposal using an approximation of the Kullback-Leibler divergence between the true posterior and the proposal distribution. The method is very flexible, applicable to any parameterized proposal distribution and it supports online and batch variants. We use the new framework to adapt powerful proposal distributions with rich parameterizations based upon neural networks leading to Neural Adaptive Sequential Monte Carlo (NASMC). Experiments indicate that NASMC significantly improves inference in a non-linear state space model outperforming adaptive proposal methods including the Extended Kalman and Unscented Particle Filters. Experiments also indicate that improved inference translates into improved parameter learning when NASMC is used as a subroutine of Particle Marginal Metropolis Hastings. Finally we show that NASMC is able to train a latent variable recurrent neural network (LV-RNN) achieving results that compete with the state-of-the-art for polymorphic music modelling. NASMC can be seen as bridging the gap between adaptive SMC methods and the recent work in scalable, black-box variational inference.


Distributed Flexible Nonlinear Tensor Factorization

Neural Information Processing Systems

Tensor factorization is a powerful tool to analyse multi-way data. Recently proposed nonlinear factorization methods, although capable of capturing complex relationships, are computationally quite expensive and may suffer a severe learning bias in case of extreme data sparsity. Therefore, we propose a distributed, flexible nonlinear tensor factorization model, which avoids the expensive computations and structural restrictions of the Kronecker-product in the existing TGP formulations, allowing an arbitrary subset of tensorial entries to be selected for training. Meanwhile, we derive a tractable and tight variational evidence lower bound (ELBO) that enables highly decoupled, parallel computations and high-quality inference.


A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

Neural Information Processing Systems

Recurrent neural networks (RNNs) stand at the forefront of many recent developments in deep learning. Yet a major difficulty with these models is their tendency to overfit, with dropout shown to fail when applied to recurrent layers.


Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning

Neural Information Processing Systems

Off-policy model-free deep reinforcement learning methods using previously collected data can improve sample efficiency over on-policy policy gradient techniques. On the other hand, on-policy algorithms are often more stable and easier to use. This paper examines, both theoretically and empirically, approaches to merging on-and off-policy updates for deep reinforcement learning. Theoretical results show that off-policy updates with a value function estimator can be interpolated with on-policy policy gradient updates whilst still satisfying performance bounds. Our analysis uses control variate methods to produce a family of policy gradient algorithms, with several recently proposed algorithms being special cases of this family. We then provide an empirical comparison of these techniques with the remaining algorithmic details fixed, and show how different mixing of off-policy gradient estimates with on-policy samples contribute to improvements in empirical performance. The final algorithm provides a generalization and unification of existing deep policy gradient techniques, has theoretical guarantees on the bias introduced by off-policy updates, and improves on the state-of-the-art model-free deep RL methods on a number of OpenAI Gym continuous control benchmarks.