Goto

Collaborating Authors

 Zhuang, Fuzhen


A Comprehensive Survey of Federated Transfer Learning: Challenges, Methods and Applications

arXiv.org Artificial Intelligence

Federated learning (FL) is a novel distributed machine learning paradigm that enables participants to collaboratively train a centralized model with privacy preservation by eliminating the requirement of data sharing. In practice, FL often involves multiple participants and requires the third party to aggregate global information to guide the update of the target participant. Therefore, many FL methods do not work well due to the training and test data of each participant may not be sampled from the same feature space and the same underlying distribution. Meanwhile, the differences in their local devices (system heterogeneity), the continuous influx of online data (incremental data), and labeled data scarcity may further influence the performance of these methods. To solve this problem, federated transfer learning (FTL), which integrates transfer learning (TL) into FL, has attracted the attention of numerous researchers. However, since FL enables a continuous share of knowledge among participants with each communication round while not allowing local data to be accessed by other participants, FTL faces many unique challenges that are not present in TL. In this survey, we focus on categorizing and reviewing the current progress on federated transfer learning, and outlining corresponding solutions and applications. Furthermore, the common setting of FTL scenarios, available datasets, and significant related research are summarized in this survey.


Improving Domain Adaptation through Extended-Text Reading Comprehension

arXiv.org Artificial Intelligence

To enhance the domain-specific capabilities of large language models, continued pre-training on a domain-specific corpus is a prevalent method. Recent work demonstrates that adapting models using reading comprehension data formatted by regex-based patterns can significantly improve performance on domain-specific tasks. However, regex-based patterns are incapable of parsing raw corpora using domain-specific knowledge. Furthermore, the question and answer pairs are extracted directly from the corpus in predefined formats offers limited context. To address this limitation, we improve reading comprehension via LLM and clustering. LLM focuses on leveraging domain knowledge within the corpus to refine comprehension stage, while clustering supplies relevant knowledge by extending the context to enrich reading stage. Additionally, our method incorporates parameter-efficient fine-tuning to improve the efficiency of domain adaptation. In comparison to AdaptLLM, our method achieves an improvement exceeding 5% in domain-specific tasks. Our code will available at https://github.com/microsoft/LMOps.


Graph Learning and Its Advancements on Large Language Models: A Holistic Survey

arXiv.org Artificial Intelligence

Graph learning is a prevalent domain that endeavors to learn the intricate relationships among nodes and the topological structure of graphs. Over the years, graph learning has transcended from graph theory to graph data mining. With the advent of representation learning, it has attained remarkable performance in diverse scenarios. Owing to its extensive application prospects, graph learning attracts copious attention. While some researchers have accomplished impressive surveys on graph learning, they failed to connect related objectives, methods, and applications in a more coherent way. As a result, they did not encompass current ample scenarios and challenging problems due to the rapid expansion of graph learning. Particularly, large language models have recently had a disruptive effect on human life, but they also show relative weakness in structured scenarios. The question of how to make these models more powerful with graph learning remains open. Our survey focuses on the most recent advancements in integrating graph learning with pre-trained language models, specifically emphasizing their application within the domain of large language models. Different from previous surveys on graph learning, we provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning. Specifically, we commence by proposing a taxonomy and then summarize the methods employed in graph learning. We then provide a detailed elucidation of mainstream applications. Finally, we propose future directions.


DPR: An Algorithm Mitigate Bias Accumulation in Recommendation feedback loops

arXiv.org Artificial Intelligence

Recommendation models trained on the user feedback collected from deployed recommendation systems are commonly biased. User feedback is considerably affected by the exposure mechanism, as users only provide feedback on the items exposed to them and passively ignore the unexposed items, thus producing numerous false negative samples. Inevitably, biases caused by such user feedback are inherited by new models and amplified via feedback loops. Moreover, the presence of false negative samples makes negative sampling difficult and introduces spurious information in the user preference modeling process of the model. Recent work has investigated the negative impact of feedback loops and unknown exposure mechanisms on recommendation quality and user experience, essentially treating them as independent factors and ignoring their cross-effects. To address these issues, we deeply analyze the data exposure mechanism from the perspective of data iteration and feedback loops with the Missing Not At Random (\textbf{MNAR}) assumption, theoretically demonstrating the existence of an available stabilization factor in the transformation of the exposure mechanism under the feedback loops. We further propose Dynamic Personalized Ranking (\textbf{DPR}), an unbiased algorithm that uses dynamic re-weighting to mitigate the cross-effects of exposure mechanisms and feedback loops without additional information. Furthermore, we design a plugin named Universal Anti-False Negative (\textbf{UFN}) to mitigate the negative impact of the false negative problem. We demonstrate theoretically that our approach mitigates the negative effects of feedback loops and unknown exposure mechanisms. Experimental results on real-world datasets demonstrate that models using DPR can better handle bias accumulation and the universality of UFN in mainstream loss methods.


Event-based Dynamic Graph Representation Learning for Patent Application Trend Prediction

arXiv.org Artificial Intelligence

Accurate prediction of what types of patents that companies will apply for in the next period of time can figure out their development strategies and help them discover potential partners or competitors in advance. Although important, this problem has been rarely studied in previous research due to the challenges in modelling companies' continuously evolving preferences and capturing the semantic correlations of classification codes. To fill in this gap, we propose an event-based dynamic graph learning framework for patent application trend prediction. In particular, our method is founded on the memorable representations of both companies and patent classification codes. When a new patent is observed, the representations of the related companies and classification codes are updated according to the historical memories and the currently encoded messages. Moreover, a hierarchical message passing mechanism is provided to capture the semantic proximities of patent classification codes by updating their representations along the hierarchical taxonomy. Finally, the patent application trend is predicted by aggregating the representations of the target company and classification codes from static, dynamic, and hierarchical perspectives. Experiments on real-world data demonstrate the effectiveness of our approach under various experimental conditions, and also reveal the abilities of our method in learning semantics of classification codes and tracking technology developing trajectories of companies.


Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph

arXiv.org Artificial Intelligence

Recent years have witnessed the rapid development of heterogeneous graph neural networks (HGNNs) in information retrieval (IR) applications. Many existing HGNNs design a variety of tailor-made graph convolutions to capture structural and semantic information in heterogeneous graphs. However, existing HGNNs usually represent each node as a single vector in the multi-layer graph convolution calculation, which makes the high-level graph convolution layer fail to distinguish information from different relations and different orders, resulting in the information loss in the message passing. %insufficient mining of information. To this end, we propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN. To avoid the information loss caused by the single vector node representation, we first design a sequential node representation learning mechanism to represent each node as a sequence of meta-path representations during the node message passing. Then we propose a heterogeneous representation fusion module, empowering Seq-HGNN to identify important meta-paths and aggregate their representations into a compact one. We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB). Experimental results show that our proposed method outperforms state-of-the-art baselines in both accuracy and efficiency. The source code is available at https://github.com/nobrowning/SEQ_HGNN.


Adaptive Taxonomy Learning and Historical Patterns Modelling for Patent Classification

arXiv.org Artificial Intelligence

Patent classification aims to assign multiple International Patent Classification (IPC) codes to a given patent. Recent methods for automatically classifying patents mainly focus on analyzing the text descriptions of patents. However, apart from the texts, each patent is also associated with some assignees, and the knowledge of their applied patents is often valuable for classification. Furthermore, the hierarchical taxonomy formulated by the IPC system provides important contextual information and enables models to leverage the correlations between IPC codes for more accurate classification. However, existing methods fail to incorporate the above aspects. In this paper, we propose an integrated framework that comprehensively considers the information on patents for patent classification. To be specific, we first present an IPC codes correlations learning module to derive their semantic representations via adaptively passing and aggregating messages within the same level and across different levels along the hierarchical taxonomy. Moreover, we design a historical application patterns learning component to incorporate the corresponding assignee's previous patents by a dual channel aggregation mechanism. Finally, we combine the contextual information of patent texts that contains the semantics of IPC codes, and assignees' sequential preferences to make predictions. Experiments on real-world datasets demonstrate the superiority of our approach over the existing methods. Besides, we present the model's ability to capture the temporal patterns of assignees and the semantic dependencies among IPC codes.


Scaling Sentence Embeddings with Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have recently garnered significant interest. With in-context learning, LLMs achieve impressive results in various natural language tasks. However, the application of LLMs to sentence embeddings remains an area of ongoing research. In this work, we propose an in-context learning-based method aimed at improving sentence embeddings performance. Our approach involves adapting the previous prompt-based representation method for autoregressive models, constructing a demonstration set that enables LLMs to perform in-context learning, and scaling up the LLMs to different model sizes. Through extensive experiments, in-context learning enables LLMs to generate high-quality sentence embeddings without any fine-tuning. It helps LLMs achieve performance comparable to current contrastive learning methods. By scaling model size, we find scaling to more than tens of billion parameters harms the performance on semantic textual similarity (STS) tasks. However, the largest model outperforms other counterparts and achieves the new state-of-the-art result on transfer tasks.


Modeling Dynamic Heterogeneous Graph and Node Importance for Future Citation Prediction

arXiv.org Artificial Intelligence

Accurate citation count prediction of newly published papers could help editors and readers rapidly figure out the influential papers in the future. Though many approaches are proposed to predict a paper's future citation, most ignore the dynamic heterogeneous graph structure or node importance in academic networks. To cope with this problem, we propose a Dynamic heterogeneous Graph and Node Importance network (DGNI) learning framework, which fully leverages the dynamic heterogeneous graph and node importance information to predict future citation trends of newly published papers. First, a dynamic heterogeneous network embedding module is provided to capture the dynamic evolutionary trends of the whole academic network. Then, a node importance embedding module is proposed to capture the global consistency relationship to figure out each paper's node importance. Finally, the dynamic evolutionary trend embeddings and node importance embeddings calculated above are combined to jointly predict the future citation counts of each paper, by a log-normal distribution model according to multi-faced paper node representations. Extensive experiments on two large-scale datasets demonstrate that our model significantly improves all indicators compared to the SOTA models.


Pruning Pre-trained Language Models Without Fine-Tuning

arXiv.org Artificial Intelligence

To overcome the overparameterized problem in Pre-trained Language Models (PLMs), pruning is widely used as a simple and straightforward compression method by directly removing unimportant weights. Previous first-order methods successfully compress PLMs to extremely high sparsity with little performance drop. These methods, such as movement pruning, use first-order information to prune PLMs while fine-tuning the remaining weights. In this work, we argue fine-tuning is redundant for first-order pruning, since first-order pruning is sufficient to converge PLMs to downstream tasks without fine-tuning. Under this motivation, we propose Static Model Pruning (SMP), which only uses first-order pruning to adapt PLMs to downstream tasks while achieving the target sparsity level. In addition, we also design a new masking function and training objective to further improve SMP. Extensive experiments at various sparsity levels show SMP has significant improvements over first-order and zero-order methods. Unlike previous first-order methods, SMP is also applicable to low sparsity and outperforms zero-order methods. Meanwhile, SMP is more parameter efficient than other methods due to it does not require fine-tuning.