Zhuang, Bohan
FocusFormer: Focusing on What We Need via Architecture Sampler
Liu, Jing, Cai, Jianfei, Zhuang, Bohan
Vision Transformers (ViTs) have underpinned the recent breakthroughs in computer vision. However, designing the architectures of ViTs is laborious and heavily relies on expert knowledge. To automate the design process and incorporate deployment flexibility, one-shot neural architecture search decouples the supernet training and architecture specialization for diverse deployment scenarios. To cope with an enormous number of sub-networks in the supernet, existing methods treat all architectures equally important and randomly sample some of them in each update step during training. During architecture search, these methods focus on finding architectures on the Pareto frontier of performance and resource consumption, which forms a gap between training and deployment. In this paper, we devise a simple yet effective method, called FocusFormer, to bridge such a gap. To this end, we propose to learn an architecture sampler to assign higher sampling probabilities to those architectures on the Pareto frontier under different resource constraints during supernet training, making them sufficiently optimized and hence improving their performance. During specialization, we can directly use the well-trained architecture sampler to obtain accurate architectures satisfying the given resource constraint, which significantly improves the search efficiency. Extensive experiments on CIFAR-100 and ImageNet show that our FocusFormer is able to improve the performance of the searched architectures while significantly reducing the search cost. For example, on ImageNet, our FocusFormer-Ti with 1.4G FLOPs outperforms AutoFormer-Ti by 0.5% in terms of the Top-1 accuracy.
Discrimination-aware Channel Pruning for Deep Neural Networks
Zhuang, Zhuangwei, Tan, Mingkui, Zhuang, Bohan, Liu, Jing, Guo, Yong, Wu, Qingyao, Huang, Junzhou, Zhu, Jinhui
Channel pruning is one of the predominant approaches for deep model compression. Existing pruning methods either train from scratch with sparsity constraints on channels, or minimize the reconstruction error between the pre-trained feature maps and the compressed ones. Both strategies suffer from some limitations: the former kind is computationally expensive and difficult to converge, whilst the latter kind optimizes the reconstruction error but ignores the discriminative power of channels. In this paper, we investigate a simple-yet-effective method called discrimination-aware channel pruning (DCP) to choose those channels that really contribute to discriminative power. To this end, we introduce additional discrimination-aware losses into the network to increase the discriminative power of intermediate layers and then select the most discriminative channels for each layer by considering the additional loss and the reconstruction error. Last, we propose a greedy algorithm to conduct channel selection and parameter optimization in an iterative way. Extensive experiments demonstrate the effectiveness of our method. For example, on ILSVRC-12, our pruned ResNet-50 with 30% reduction of channels outperforms the baseline model by 0.39% in top-1 accuracy.
Discrimination-aware Channel Pruning for Deep Neural Networks
Zhuang, Zhuangwei, Tan, Mingkui, Zhuang, Bohan, Liu, Jing, Guo, Yong, Wu, Qingyao, Huang, Junzhou, Zhu, Jinhui
Channel pruning is one of the predominant approaches for deep model compression. Existing pruning methods either train from scratch with sparsity constraints on channels, or minimize the reconstruction error between the pre-trained feature maps and the compressed ones. Both strategies suffer from some limitations: the former kind is computationally expensive and difficult to converge, whilst the latter kind optimizes the reconstruction error but ignores the discriminative power of channels. To overcome these drawbacks, we investigate a simple-yet-effective method, called discrimination-aware channel pruning, to choose those channels that really contribute to discriminative power. To this end, we introduce additional losses into the network to increase the discriminative power of intermediate layers and then select the most discriminative channels for each layer by considering the additional loss and the reconstruction error. Last, we propose a greedy algorithm to conduct channel selection and parameter optimization in an iterative way. Extensive experiments demonstrate the effectiveness of our method. For example, on ILSVRC-12, our pruned ResNet-50 with 30% reduction of channels even outperforms the original model by 0.39% in top-1 accuracy.
HCVRD: A Benchmark for Large-Scale Human-Centered Visual Relationship Detection
Zhuang, Bohan (The University of Adelaide) | Wu, Qi (The University of Adelaide) | Shen, Chunhua (The University of Adelaide) | Reid, Ian (The University of Adelaide) | Hengel, Anton van den (The University of Adelaide)
Visual relationship detection aims to capture interactions between pairs of objects in images. Relationships between objects and humans represent a particularly important subset of this problem, with implications for challenges such as understanding human behavior, and identifying affordances, amongst others. In addressing this problem we first construct a large-scale human-centric visual relationship detection dataset (HCVRD), which provides many more types of relationship annotations (nearly 10K categories) than the previous released datasets. This large label space better reflects the reality of human-object interactions, but gives rise to a long-tail distribution problem, which in turn demands a zero-shot approach to labels appearing only in the test set. This is the first time this issue has been addressed. We propose a webly-supervised approach to these problems and demonstrate that the proposed model provides a strong baseline on our HCVRD dataset.