Not enough data to create a plot.
Try a different view from the menu above.
Zhu, Yulin
AuditVotes: A Framework Towards More Deployable Certified Robustness for Graph Neural Networks
Lai, Yuni, Zhu, Yulin, Sun, Yixuan, Wu, Yulun, Xiao, Bin, Li, Gaolei, Li, Jianhua, Zhou, Kai
Despite advancements in Graph Neural Networks (GNNs), adaptive attacks continue to challenge their robustness. Certified robustness based on randomized smoothing has emerged as a promising solution, offering provable guarantees that a model's predictions remain stable under adversarial perturbations within a specified range. However, existing methods face a critical trade-off between accuracy and robustness, as achieving stronger robustness requires introducing greater noise into the input graph. This excessive randomization degrades data quality and disrupts prediction consistency, limiting the practical deployment of certifiably robust GNNs in real-world scenarios where both accuracy and robustness are essential. To address this challenge, we propose \textbf{AuditVotes}, the first framework to achieve both high clean accuracy and certifiably robust accuracy for GNNs. It integrates randomized smoothing with two key components, \underline{au}gmentation and con\underline{dit}ional smoothing, aiming to improve data quality and prediction consistency. The augmentation, acting as a pre-processing step, de-noises the randomized graph, significantly improving data quality and clean accuracy. The conditional smoothing, serving as a post-processing step, employs a filtering function to selectively count votes, thereby filtering low-quality predictions and improving voting consistency. Extensive experimental results demonstrate that AuditVotes significantly enhances clean accuracy, certified robustness, and empirical robustness while maintaining high computational efficiency. Notably, compared to baseline randomized smoothing, AuditVotes improves clean accuracy by $437.1\%$ and certified accuracy by $409.3\%$ when the attacker can arbitrarily insert $20$ edges on the Cora-ML datasets, representing a substantial step toward deploying certifiably robust GNNs in real-world applications.
Cost Aware Untargeted Poisoning Attack against Graph Neural Networks,
Han, Yuwei, Lai, Yuni, Zhu, Yulin, Zhou, Kai
Graph Neural Networks (GNNs) have become widely used in the field of graph mining. However, these networks are vulnerable to structural perturbations. While many research efforts have focused on analyzing vulnerability through poisoning attacks, we have identified an inefficiency in current attack losses. These losses steer the attack strategy towards modifying edges targeting misclassified nodes or resilient nodes, resulting in a waste of structural adversarial perturbation. To address this issue, we propose a novel attack loss framework called the Cost Aware Poisoning Attack (CA-attack) to improve the allocation of the attack budget by dynamically considering the classification margins of nodes. Specifically, it prioritizes nodes with smaller positive margins while postponing nodes with negative margins. Our experiments demonstrate that the proposed CA-attack significantly enhances existing attack strategies
Node-aware Bi-smoothing: Certified Robustness against Graph Injection Attacks
Lai, Yuni, Zhu, Yulin, Pan, Bailin, Zhou, Kai
Deep Graph Learning (DGL) has emerged as a crucial technique across various domains. However, recent studies have exposed vulnerabilities in DGL models, such as susceptibility to evasion and poisoning attacks. While empirical and provable robustness techniques have been developed to defend against graph modification attacks (GMAs), the problem of certified robustness against graph injection attacks (GIAs) remains largely unexplored. To bridge this gap, we introduce the node-aware bi-smoothing framework, which is the first certifiably robust approach for general node classification tasks against GIAs. Notably, the proposed node-aware bi-smoothing scheme is model-agnostic and is applicable for both evasion and poisoning attacks. Through rigorous theoretical analysis, we establish the certifiable conditions of our smoothing scheme. We also explore the practical implications of our node-aware bi-smoothing schemes in two contexts: as an empirical defense approach against real-world GIAs and in the context of recommendation systems. Furthermore, we extend two state-of-the-art certified robustness frameworks to address node injection attacks and compare our approach against them. Extensive evaluations demonstrate the effectiveness of our proposed certificates.
Coupled-Space Attacks against Random-Walk-based Anomaly Detection
Lai, Yuni, Waniek, Marcin, Li, Liying, Wu, Jingwen, Zhu, Yulin, Michalak, Tomasz P., Rahwan, Talal, Zhou, Kai
Random Walks-based Anomaly Detection (RWAD) is commonly used to identify anomalous patterns in various applications. An intriguing characteristic of RWAD is that the input graph can either be pre-existing or constructed from raw features. Consequently, there are two potential attack surfaces against RWAD: graph-space attacks and feature-space attacks. In this paper, we explore this vulnerability by designing practical coupled-space attacks, investigating the interplay between graph-space and feature-space attacks. To this end, we conduct a thorough complexity analysis, proving that attacking RWAD is NP-hard. Then, we proceed to formulate the graph-space attack as a bi-level optimization problem and propose two strategies to solve it: alternative iteration (alterI-attack) or utilizing the closed-form solution of the random walk model (cf-attack). Finally, we utilize the results from the graph-space attacks as guidance to design more powerful feature-space attacks (i.e., graph-guided attacks). Comprehensive experiments demonstrate that our proposed attacks are effective in enabling the target nodes from RWAD with a limited attack budget. In addition, we conduct transfer attack experiments in a black-box setting, which show that our feature attack significantly decreases the anomaly scores of target nodes. Our study opens the door to studying the coupled-space attack against graph anomaly detection in which the graph space relies on the feature space.
Graph Anomaly Detection at Group Level: A Topology Pattern Enhanced Unsupervised Approach
Ai, Xing, Zhou, Jialong, Zhu, Yulin, Li, Gaolei, Michalak, Tomasz P., Luo, Xiapu, Zhou, Kai
Graph anomaly detection (GAD) has achieved success and has been widely applied in various domains, such as fraud detection, cybersecurity, finance security, and biochemistry. However, existing graph anomaly detection algorithms focus on distinguishing individual entities (nodes or graphs) and overlook the possibility of anomalous groups within the graph. To address this limitation, this paper introduces a novel unsupervised framework for a new task called Group-level Graph Anomaly Detection (Gr-GAD). The proposed framework first employs a variant of Graph AutoEncoder (GAE) to locate anchor nodes that belong to potential anomaly groups by capturing long-range inconsistencies. Subsequently, group sampling is employed to sample candidate groups, which are then fed into the proposed Topology Pattern-based Graph Contrastive Learning (TPGCL) method. TPGCL utilizes the topology patterns of groups as clues to generate embeddings for each candidate group and thus distinct anomaly groups. The experimental results on both real-world and synthetic datasets demonstrate that the proposed framework shows superior performance in identifying and localizing anomaly groups, highlighting it as a promising solution for Gr-GAD. Datasets and codes of the proposed framework are at the github repository https://anonymous.4open.science/r/Topology-Pattern-Enhanced-Unsupervised-Group-level-Graph-Anomaly-Detection.
Homophily-Driven Sanitation View for Robust Graph Contrastive Learning
Zhu, Yulin, Ai, Xing, Vorobeychik, Yevgeniy, Zhou, Kai
We investigate adversarial robustness of unsupervised Graph Contrastive Learning (GCL) against structural attacks. First, we provide a comprehensive empirical and theoretical analysis of existing attacks, revealing how and why they downgrade the performance of GCL. Inspired by our analytic results, we present a robust GCL framework that integrates a homophily-driven sanitation view, which can be learned jointly with contrastive learning. A key challenge this poses, however, is the non-differentiable nature of the sanitation objective. To address this challenge, we propose a series of techniques to enable gradient-based end-to-end robust GCL. Moreover, we develop a fully unsupervised hyperparameter tuning method which, unlike prior approaches, does not require knowledge of node labels. We conduct extensive experiments to evaluate the performance of our proposed model, GCHS (Graph Contrastive Learning with Homophily-driven Sanitation View), against two state of the art structural attacks on GCL. Our results demonstrate that GCHS consistently outperforms all state of the art baselines in terms of the quality of generated node embeddings as well as performance on two important downstream tasks.
FocusedCleaner: Sanitizing Poisoned Graphs for Robust GNN-based Node Classification
Zhu, Yulin, Tong, Liang, Li, Gaolei, Luo, Xiapu, Zhou, Kai
Graph Neural Networks (GNNs) are vulnerable to data poisoning attacks, which will generate a poisoned graph as the input to the GNN models. We present FocusedCleaner as a poisoned graph sanitizer to effectively identify the poison injected by attackers. Specifically, FocusedCleaner provides a sanitation framework consisting of two modules: bi-level structural learning and victim node detection. In particular, the structural learning module will reverse the attack process to steadily sanitize the graph while the detection module provides ``the focus" -- a narrowed and more accurate search region -- to structural learning. These two modules will operate in iterations and reinforce each other to sanitize a poisoned graph step by step. As an important application, we show that the adversarial robustness of GNNs trained over the sanitized graph for the node classification task is significantly improved. Extensive experiments demonstrate that FocusedCleaner outperforms the state-of-the-art baselines both on poisoned graph sanitation and improving robustness.
Towards Adversarially Robust Recommendation from Adaptive Fraudster Detection
Lai, Yuni, Zhu, Yulin, Fan, Wenqi, Zhang, Xiaoge, Zhou, Kai
The robustness of recommender systems under node injection attacks has garnered significant attention. Recently, GraphRfi, a GNN-based recommender system, was proposed and shown to effectively mitigate the impact of injected fake users. However, we demonstrate that GraphRfi remains vulnerable to attacks due to the supervised nature of its fraudster detection component, where obtaining clean labels is challenging in practice. In particular, we propose a powerful poisoning attack, MetaC, against both GNN-based and MF-based recommender systems. Furthermore, we analyze why GraphRfi fails under such an attack. Then, based on our insights obtained from vulnerability analysis, we design an adaptive fraudster detection module that explicitly considers label uncertainty. This module can serve as a plug-in for different recommender systems, resulting in a robust framework named PDR. Comprehensive experiments show that our defense approach outperforms other benchmark methods under attacks. Overall, our research presents an effective framework for integrating fraudster detection into recommendation systems to achieve adversarial robustness.
Simple yet Effective Gradient-Free Graph Convolutional Networks
Zhu, Yulin, Ai, Xing, Li, Qimai, Wu, Xiao-Ming, Zhou, Kai
Linearized Graph Neural Networks (GNNs) have attracted great attention in recent years for graph representation learning. Compared with nonlinear Graph Neural Network (GNN) models, linearized GNNs are much more time-efficient and can achieve comparable performances on typical downstream tasks such as node classification. Although some linearized GNN variants are purposely crafted to mitigate ``over-smoothing", empirical studies demonstrate that they still somehow suffer from this issue. In this paper, we instead relate over-smoothing with the vanishing gradient phenomenon and craft a gradient-free training framework to achieve more efficient and effective linearized GNNs which can significantly overcome over-smoothing and enhance the generalization of the model. The experimental results demonstrate that our methods achieve better and more stable performances on node classification tasks with varying depths and cost much less training time.