Plotting

 Zhou, Dian


The Reasoning-Memorization Interplay in Language Models Is Mediated by a Single Direction

arXiv.org Artificial Intelligence

Large language models (LLMs) excel on a variety of reasoning benchmarks, but previous studies suggest they sometimes struggle to generalize to unseen questions, potentially due to over-reliance on memorized training examples. However, the precise conditions under which LLMs switch between reasoning and memorization during text generation remain unclear. In this work, we provide a mechanistic understanding of LLMs' reasoning-memorization dynamics by identifying a set of linear features in the model's residual stream that govern the balance between genuine reasoning and memory recall. These features not only distinguish reasoning tasks from memory-intensive ones but can also be manipulated to causally influence model performance on reasoning tasks. Additionally, we show that intervening in these reasoning features helps the model more accurately activate the most relevant problem-solving capabilities during answer generation. Our findings offer new insights into the underlying mechanisms of reasoning and memory in LLMs and pave the way for the development of more robust and interpretable generative AI systems.


Projection based Active Gaussian Process Regression for Pareto Front Modeling

arXiv.org Machine Learning

Pareto Front (PF) modeling is essential in decision making problems across all domains such as economics, medicine or engineering. In Operation Research literature, this task has been addressed based on multi-objective optimization algorithms. However, without learning models for PF, these methods cannot examine whether a new provided point locates on PF or not. In this paper, we reconsider the task from Data Mining perspective. A novel projection based active Gaussian process regression (P- aGPR) method is proposed for efficient PF modeling. First, P- aGPR chooses a series of projection spaces with dimensionalities ranking from low to high. Next, in each projection space, a Gaussian process regression (GPR) model is trained to represent the constraint that PF should satisfy in that space. Moreover, in order to improve modeling efficacy and stability, an active learning framework has been developed by exploiting the uncertainty information obtained in the GPR models. Different from all existing methods, our proposed P-aGPR method can not only provide a generative PF model, but also fast examine whether a provided point locates on PF or not. The numerical results demonstrate that compared to state-of-the-art passive learning methods the proposed P-aGPR method can achieve higher modeling accuracy and stability.