Goto

Collaborating Authors

 Zheng, Shuai


Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens

arXiv.org Artificial Intelligence

Transformers are central in modern natural language processing and computer vision applications. Despite recent works devoted to reducing the quadratic cost of such models (as a function of the sequence length), dealing with ultra long sequences (e.g., with more than 16K tokens) remains challenging. Applications such as answering questions based on a book or summarizing a scientific article are inefficient or infeasible. Here, we propose to significantly improve the efficiency of Transformers for ultra long sequences, by compressing the sequence into a much smaller representation at each layer. Specifically, by exploiting the fact that in many tasks, only a small subset of special tokens (we call VIP-tokens) are most relevant to the final prediction, we propose a VIP-token centric compression (VCC) scheme which selectively compresses the sequence based on their impact on approximating the representation of the VIP-tokens. Compared with competitive baselines, our algorithm is not only efficient (achieving more than $3\times$ efficiency gain compared to baselines on 4K and 16K lengths), but also offers competitive/better performance on a large number of tasks. Further, we show that our algorithm scales to 128K tokens (or more) while consistently offering accuracy improvement.


SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning

arXiv.org Artificial Intelligence

Pre-trained large language models can efficiently interpolate human-written prompts in a natural way. Multitask prompted learning can help generalization through a diverse set of tasks at once, thus enhancing the potential for more effective downstream fine-tuning. To perform efficient multitask-inference in the same batch, parameter-efficient fine-tuning methods such as prompt tuning have been proposed. However, the existing prompt tuning methods may lack generalization. We propose SPT, a semi-parametric prompt tuning method for multitask prompted learning. The novel component of SPT is a memory bank from where memory prompts are retrieved based on discrete prompts. Extensive experiments, such as (i) fine-tuning a full language model with SPT on 31 different tasks from 8 different domains and evaluating zero-shot generalization on 9 heldout datasets under 5 NLP task categories and (ii) pretraining SPT on the GLUE datasets and evaluating fine-tuning on the SuperGLUE datasets, demonstrate effectiveness of SPT.


SMILE: Scaling Mixture-of-Experts with Efficient Bi-level Routing

arXiv.org Artificial Intelligence

The mixture of Expert (MoE) parallelism is a recent advancement that scales up the model size with constant computational cost. MoE selects different sets of parameters (i.e., experts) for each incoming token, resulting in a sparsely-activated model. Despite several successful applications of MoE, its training efficiency degrades significantly as the number of experts increases. The routing stage in MoE relies on the efficiency of the All2All communication collective, which suffers from network congestion and has poor scalability. To mitigate these issues, we introduce SMILE, which exploits heterogeneous network bandwidth and splits a single-step routing into bi-level routing. Our experimental results show that the proposed method obtains a 2.5x speedup over Switch Transformer in terms of pretraining throughput on the Colossal Clean Crawled Corpus without losing any convergence speed.


CETransformer: Casual Effect Estimation via Transformer Based Representation Learning

arXiv.org Artificial Intelligence

Treatment effect estimation, which refers to the estimation of causal effects and aims to measure the strength of the causal relationship, is of great importance in many fields but is a challenging problem in practice. As present, data-driven causal effect estimation faces two main challenges, i.e., selection bias and the missing of counterfactual. To address these two issues, most of the existing approaches tend to reduce the selection bias by learning a balanced representation, and then to estimate the counterfactual through the representation. However, they heavily rely on the finely hand-crafted metric functions when learning balanced representations, which generally doesn't work well for the situations where the original distribution is complicated. In this paper, we propose a CE-Transformer model for casual effect estimation via transformer based representation learning. To learn the representation of covariates(features) robustly, a self-supervised transformer is proposed, by which the correlation between covariates can be well exploited through self-attention mechanism. In addition, an adversarial network is adopted to balance the distribution of the treated and control groups in the representation space. Experimental results on three real-world datasets demonstrate the advantages of the proposed CETransformer, compared with the state-ofthe-art treatment effect estimation methods.


Compressed Communication for Distributed Training: Adaptive Methods and System

arXiv.org Machine Learning

Communication overhead severely hinders the scalability of distributed machine learning systems. Recently, there has been a growing interest in using gradient compression to reduce the communication overhead of the distributed training. However, there is little understanding of applying gradient compression to adaptive gradient methods. Moreover, its performance benefits are often limited by the non-negligible compression overhead. In this paper, we first introduce a novel adaptive gradient method with gradient compression. We show that the proposed method has a convergence rate of $\mathcal{O}(1/\sqrt{T})$ for non-convex problems. In addition, we develop a scalable system called BytePS-Compress for two-way compression, where the gradients are compressed in both directions between workers and parameter servers. BytePS-Compress pipelines the compression and decompression on CPUs and achieves a high degree of parallelism. Empirical evaluations show that we improve the training time of ResNet50, VGG16, and BERT-base by 5.0%, 58.1%, 23.3%, respectively, without any accuracy loss with 25 Gb/s networking. Furthermore, for training the BERT models, we achieve a compression rate of 333x compared to the mixed-precision training.


Adversarial Graph Disentanglement

arXiv.org Artificial Intelligence

A real-world graph has a complex topology structure, which is often formed by the interaction of different latent factors. Disentanglement of these latent factors can effectively improve the robustness and interpretability of node representation of the graph. However, most existing methods lack consideration of the intrinsic differences in links caused by factor entanglement. In this paper, we propose an Adversarial Disentangled Graph Convolutional Network (ADGCN) for disentangled graph representation learning. Specifically, a dynamic multi-component convolution layer is designed to achieve micro-disentanglement by inferring latent components that caused links between nodes. On the basis of micro-disentanglement, we further propose a macro-disentanglement adversarial regularizer that improves the separability between component distributions, thus restricting interdependence among components. Additionally, to learn collaboratively a better disentangled representation and topological structure, a diversity preserving node sampling-based progressive refinement of graph structure is proposed. The experimental results on various real-world graph data verify that our ADGCN obtains remarkably more favorable performance over currently available alternatives.


Accelerated Large Batch Optimization of BERT Pretraining in 54 minutes

arXiv.org Machine Learning

BERT has recently attracted a lot of attention in natural language understanding (NLU) and achieved state-of-the-art results in various NLU tasks. However, its success requires large deep neural networks and huge amount of data, which result in long training time and impede development progress. Using stochastic gradient methods with large mini-batch has been advocated as an efficient tool to reduce the training time. Along this line of research, LAMB is a prominent example that reduces the training time of BERT from 3 days to 76 minutes on a TPUv3 Pod. In this paper, we propose an accelerated gradient method called LANS to improve the efficiency of using large mini-batches for training. As the learning rate is theoretically upper bounded by the inverse of the Lipschitz constant of the function, one cannot always reduce the number of optimization iterations by selecting a larger learning rate. In order to use larger mini-batch size without accuracy loss, we develop a new learning rate scheduler that overcomes the difficulty of using large learning rate. Using the proposed LANS method and the learning rate scheme, we scaled up the mini-batch sizes to 96K and 33K in phases 1 and 2 of BERT pretraining, respectively. It takes 54 minutes on 192 AWS EC2 P3dn.24xlarge instances to achieve a target F1 score of 90.5 or higher on SQuAD v1.1, achieving the fastest BERT training time in the cloud.


Dynamic Dispatching for Large-Scale Heterogeneous Fleet via Multi-agent Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Dynamic dispatching is one of the core problems for operation optimization in traditional industries such as mining, as it is about how to smartly allocate the right resources to the right place at the right time. Conventionally, the industry relies on heuristics or even human intuitions which are often short-sighted and sub-optimal solutions. Leveraging the power of AI and Internet of Things (IoT), data-driven automation is reshaping this area. However, facing its own challenges such as large-scale and heterogenous trucks running in a highly dynamic environment, it can barely adopt methods developed in other domains (e.g., ride-sharing). In this paper, we propose a novel Deep Reinforcement Learning approach to solve the dynamic dispatching problem in mining. We first develop an event-based mining simulator with parameters calibrated in real mines. Then we propose an experience-sharing Deep Q Network with a novel abstract state/action representation to learn memories from heterogeneous agents altogether and realizes learning in a centralized way. We demonstrate that the proposed methods significantly outperform the most widely adopted approaches in the industry by $5.56\%$ in terms of productivity. The proposed approach has great potential in a broader range of industries (e.g., manufacturing, logistics) which have a large-scale of heterogenous equipment working in a highly dynamic environment, as a general framework for dynamic resource allocation.


CSER: Communication-efficient SGD with Error Reset

arXiv.org Machine Learning

The scalability of Distributed Stochastic Gradient Descent (SGD) is today limited by communication bottlenecks. We propose a novel SGD variant: Communication-efficient SGD with Error Reset, or CSER. The key idea in CSER is first a new technique called "error reset" that adapts arbitrary compressors for SGD, producing bifurcated local models with periodic reset of resulting local residual errors. Second we introduce partial synchronization for both the gradients and the models, leveraging advantages from them. We prove the convergence of CSER for smooth non-convex problems. Empirical results show that when combined with highly aggressive compressors, the CSER algorithms: i) cause no loss of accuracy, and ii) accelerate the training by nearly $10\times$ for CIFAR-100, and by $4.5\times$ for ImageNet.


Manufacturing Dispatching using Reinforcement and Transfer Learning

arXiv.org Artificial Intelligence

Efficient dispatching rule in manufacturing industry is key to ensure product on-time delivery and minimum past-due and inventory cost. Manufacturing, especially in the developed world, is moving towards on-demand manufacturing meaning a high mix, low volume product mix. This requires efficient dispatching that can work in dynamic and stochastic environments, meaning it allows for quick response to new orders received and can work over a disparate set of shop floor settings. In this paper we address this problem of dispatching in manufacturing. Using reinforcement learning (RL), we propose a new design to formulate the shop floor state as a 2-D matrix, incorporate job slack time into state representation, and design lateness and tardiness rewards function for dispatching purpose. However, maintaining a separate RL model for each production line on a manufacturing shop floor is costly and often infeasible. To address this, we enhance our deep RL model with an approach for dispatching policy transfer. This increases policy generalization and saves time and cost for model training and data collection. Experiments show that: (1) our approach performs the best in terms of total discounted reward and average lateness, tardiness, (2) the proposed policy transfer approach reduces training time and increases policy generalization.