Goto

Collaborating Authors

 Zhao, Xufeng


Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Language Models through Logic

arXiv.org Artificial Intelligence

Recent advancements in large language models have showcased their remarkable generalizability across various domains. However, their reasoning abilities still have significant room for improvement, especially when confronted with scenarios requiring multi-step reasoning. Although large language models possess extensive knowledge, their behavior, particularly in terms of reasoning, often fails to effectively utilize this knowledge to establish a coherent thinking paradigm. Generative language models sometimes show hallucinations as their reasoning procedures are unconstrained by logical principles. Aiming to improve the zero-shot chain-of-thought reasoning ability of large language models, we propose Logical Chain-of-Thought (LogiCoT), a neurosymbolic framework which leverages principles from symbolic logic to verify and revise the reasoning processes accordingly. Experimental evaluations conducted on language tasks in diverse domains, including arithmetic, commonsense, symbolic, causal inference, and social problems, demonstrate the efficacy of the enhanced reasoning paradigm by logic.


Internally Rewarded Reinforcement Learning

arXiv.org Artificial Intelligence

We study a class of reinforcement learning problems where the reward signals for policy learning are generated by an internal reward model that is dependent on and jointly optimized with the policy. This interdependence between the policy and the reward model leads to an unstable learning process because reward signals from an immature reward model are noisy and impede policy learning, and conversely, an under-optimized policy impedes reward estimation learning. We call this learning setting $\textit{Internally Rewarded Reinforcement Learning}$ (IRRL) as the reward is not provided directly by the environment but $\textit{internally}$ by a reward model. In this paper, we formally formulate IRRL and present a class of problems that belong to IRRL. We theoretically derive and empirically analyze the effect of the reward function in IRRL and based on these analyses propose the clipped linear reward function. Experimental results show that the proposed reward function can consistently stabilize the training process by reducing the impact of reward noise, which leads to faster convergence and higher performance compared with baselines in diverse tasks.