Zhao, Tiancheng
RS5M and GeoRSCLIP: A Large Scale Vision-Language Dataset and A Large Vision-Language Model for Remote Sensing
Zhang, Zilun, Zhao, Tiancheng, Guo, Yulong, Yin, Jianwei
Pre-trained Vision-Language Models (VLMs) utilizing extensive image-text paired data have demonstrated unprecedented image-text association capabilities, achieving remarkable results across various downstream tasks. A critical challenge is how to make use of existing large-scale pre-trained VLMs, which are trained on common objects, to perform the domain-specific transfer for accomplishing domain-related downstream tasks. A critical challenge is how to make use of existing large-scale pre-trained VLMs, which are trained on common objects, to perform the domain-specific transfer for accomplishing domain-related downstream tasks. In this paper, we propose a new framework that includes the Domain pre-trained Vision-Language Model (DVLM), bridging the gap between the General Vision-Language Model (GVLM) and domain-specific downstream tasks. Moreover, we present an image-text paired dataset in the field of remote sensing (RS), RS5M, which has 5 million RS images with English descriptions. The dataset is obtained from filtering publicly available image-text paired datasets and captioning label-only RS datasets with pre-trained VLM. These constitute the first large-scale RS image-text paired dataset. Additionally, we fine-tuned the CLIP model and tried several Parameter-Efficient Fine-Tuning methods on RS5M to implement the DVLM. Experimental results show that our proposed dataset is highly effective for various tasks, and our model GeoRSCLIP improves upon the baseline or previous state-of-the-art model by $3\%\sim20\%$ in Zero-shot Classification (ZSC), $3\%\sim6\%$ in Remote Sensing Cross-Modal Text-Image Retrieval (RSCTIR) and $4\%\sim5\%$ in Semantic Localization (SeLo) tasks. Dataset and models have been released in: \url{https://github.com/om-ai-lab/RS5M}.
How to Evaluate the Generalization of Detection? A Benchmark for Comprehensive Open-Vocabulary Detection
Yao, Yiyang, Liu, Peng, Zhao, Tiancheng, Zhang, Qianqian, Liao, Jiajia, Fang, Chunxin, Lee, Kyusong, Wang, Qing
Object detection (OD) in computer vision has made significant progress in recent years, transitioning from closed-set labels to open-vocabulary detection (OVD) based on large-scale vision-language pre-training (VLP). However, current evaluation methods and datasets are limited to testing generalization over object types and referral expressions, which do not provide a systematic, fine-grained, and accurate benchmark of OVD models' abilities. In this paper, we propose a new benchmark named OVDEval, which includes 9 sub-tasks and introduces evaluations on commonsense knowledge, attribute understanding, position understanding, object relation comprehension, and more. The dataset is meticulously created to provide hard negatives that challenge models' true understanding of visual and linguistic input. Additionally, we identify a problem with the popular Average Precision (AP) metric when benchmarking models on these fine-grained label datasets and propose a new metric called Non-Maximum Suppression Average Precision (NMS-AP) to address this issue. Extensive experimental results show that existing top OVD models all fail on the new tasks except for simple object types, demonstrating the value of the proposed dataset in pinpointing the weakness of current OVD models and guiding future research. Furthermore, the proposed NMS-AP metric is verified by experiments to provide a much more truthful evaluation of OVD models, whereas traditional AP metrics yield deceptive results. Data is available at \url{https://github.com/om-ai-lab/OVDEval}
Data Augmentation is a Hyperparameter: Cherry-picked Self-Supervision for Unsupervised Anomaly Detection is Creating the Illusion of Success
Yoo, Jaemin, Zhao, Tiancheng, Akoglu, Leman
Self-supervised learning (SSL) has emerged as a promising alternative to create supervisory signals to real-world problems, avoiding the extensive cost of manual labeling. SSL is particularly attractive for unsupervised tasks such as anomaly detection (AD), where labeled anomalies are rare or often nonexistent. A large catalog of augmentation functions has been used for SSL-based AD (SSAD) on image data, and recent works have reported that the type of augmentation has a significant impact on accuracy. Motivated by those, this work sets out to put image-based SSAD under a larger lens and investigate the role of data augmentation in SSAD. Through extensive experiments on 3 different detector models and across 420 AD tasks, we provide comprehensive numerical and visual evidences that the alignment between data augmentation and anomaly-generating mechanism is the key to the success of SSAD, and in the lack thereof, SSL may even impair accuracy. To the best of our knowledge, this is the first meta-analysis on the role of data augmentation in SSAD.
VL-CheckList: Evaluating Pre-trained Vision-Language Models with Objects, Attributes and Relations
Zhao, Tiancheng, Zhang, Tianqi, Zhu, Mingwei, Shen, Haozhan, Lee, Kyusong, Lu, Xiaopeng, Yin, Jianwei
Vision-Language Pretraining (VLP) models have recently successfully facilitated many cross-modal downstream tasks. Most existing works evaluated their systems by comparing the fine-tuned downstream task performance. However, only average downstream task accuracy provides little information about the pros and cons of each VLP method, let alone provides insights on how the community can improve the systems in the future. Inspired by the CheckList for testing natural language processing, we exploit VL-CheckList, a novel framework to understand the capabilities of VLP models. The proposed method divides the image-texting ability of a VLP model into three categories: objects, attributes, and relations, and uses a novel taxonomy to further break down these three aspects. We conduct comprehensive studies to analyze seven recently popular VLP models via the proposed framework. Results confirm the effectiveness of the proposed method by revealing fine-grained differences among the compared models that were not visible from downstream task-only evaluation. Further results show promising research direction in building better VLP models. Our data and code are available at: https://github.com/om-ai-lab/VL-CheckList.
OmDet: Language-Aware Object Detection with Large-scale Vision-Language Multi-dataset Pre-training
Zhao, Tiancheng, Liu, Peng, Lu, Xiaopeng, Lee, Kyusong
Advancing object detection to open-vocabulary and few-shot transfer has long been a challenge for computer vision research. This work explores a continual learning approach that enables a detector to expand its zero/few-shot capabilities via multi-dataset vision-language pre-training. Using natural language as knowledge representation, we explore methods to accumulate "visual vocabulary" from different training datasets and unify the task as a language-conditioned detection framework. Specifically, we propose a novel language-aware detector OmDet and a novel training mechanism. The proposed multimodal detection network can resolve the technical challenges in multi-dataset joint training and it can generalize to arbitrary number of training datasets without the requirements for manual label taxonomy merging. Experiment results on COCO, Pascal VOC, and Wider Face/Pedestrian confirmed the efficacy by achieving on par or higher scores in joint training compared to training separately. Moreover, we pre-train on more than 20 million images with 4 million unique object vocabulary, and the resulting model is evaluated on 35 downstream tasks of ODinW. Results show that OmDet is able to achieve the state-of-the-art fine-tuned performance on ODinW. And analysis shows that by scaling up the proposed pre-training method, OmDet continues to improve its zero/few-shot tuning performance, suggesting a promising way for further scaling.
Report from the NSF Future Directions Workshop, Toward User-Oriented Agents: Research Directions and Challenges
Eskenazi, Maxine, Zhao, Tiancheng
This USER Workshop was convened with the goal of defining future research directions for the burgeoning intelligent agent research community and to communicate them to the National Science Foundation. It took place in Pittsburgh Pennsylvania on October 24 and 25, 2019 and was sponsored by National Science Foundation Grant Number IIS-1934222. Any opinions, findings and conclusions or future directions expressed in this document are those of the authors and do not necessarily reflect the views of the National Science Foundation. The 27 participants presented their individual research interests and their personal research goals. In the breakout sessions that followed, the participants defined the main research areas within the domain of intelligent agents and they discussed the major future directions that the research in each area of this domain should take.
Pretraining Methods for Dialog Context Representation Learning
Mehri, Shikib, Razumovskaia, Evgeniia, Zhao, Tiancheng, Eskenazi, Maxine
This paper examines various unsupervised pretraining objectives for learning dialog context representations. Two novel methods of pretraining dialog context encoders are proposed, and a total of four methods are examined. Each pretraining objective is fine-tuned and evaluated on a set of downstream dialog tasks using the MultiWoz dataset and strong performance improvement is observed. Further evaluation shows that our pretraining objectives result in not only better performance, but also better convergence, models that are less data hungry and have better domain generalizability.
Target-Guided Open-Domain Conversation
Tang, Jianheng, Zhao, Tiancheng, Xiong, Chenyan, Liang, Xiaodan, Xing, Eric P., Hu, Zhiting
Many real-world open-domain conversation applications have specific goals to achieve during open-ended chats, such as recommendation, psychotherapy, education, etc. We study the problem of imposing conversational goals on open-domain chat agents. In particular, we want a conversational system to chat naturally with human and proactively guide the conversation to a designated target subject. The problem is challenging as no public data is available for learning such a target-guided strategy. We propose a structured approach that introduces coarse-grained keywords to control the intended content of system responses. We then attain smooth conversation transition through turn-level supervised learning, and drive the conversation towards the target with discourse-level constraints. We further derive a keyword-augmented conversation dataset for the study. Quantitative and human evaluations show our system can produce meaningful and effective conversations, significantly improving over other approaches.
Unsupervised Dialog Structure Learning
Shi, Weiyan, Zhao, Tiancheng, Yu, Zhou
Learning a shared dialog structure from a set of task-oriented dialogs is an important challenge in computational linguistics. The learned dialog structure can shed light on how to analyze human dialogs, and more importantly contribute to the design and evaluation of dialog systems. We propose to extract dialog structures using a modified VRNN model with discrete latent vectors. Different from existing HMM-based models, our model is based on variational-autoencoder (VAE). Such model is able to capture more dynamics in dialogs beyond the surface forms of the language. We find that qualitatively, our method extracts meaningful dialog structure, and quantitatively, outperforms previous models on the ability to predict unseen data. We further evaluate the model's effectiveness in a downstream task, the dialog system building task. Experiments show that, by integrating the learned dialog structure into the reward function design, the model converges faster and to a better outcome in a reinforcement learning setting.
Beyond Turing: Intelligent Agents Centered on the User
Eskenazi, Maxine, Mehri, Shikib, Razumovskaia, Evgeniia, Zhao, Tiancheng
Most research on intelligent agents centers on the agent and not on the user. We look at the origins of agent-centric research for slot-filling, gaming and chatbot agents. We then argue that it is important to concentrate more on the user. After reviewing relevant literature, some approaches for creating and assessing user-centric systems are proposed.