Plotting

 Zhao, Lin


Preference-Guided Reinforcement Learning for Efficient Exploration

arXiv.org Artificial Intelligence

In this paper, we investigate preference-based reinforcement learning (PbRL) that allows reinforcement learning (RL) agents to learn from human feedback. This is particularly valuable when defining a fine-grain reward function is not feasible. However, this approach is inefficient and impractical for promoting deep exploration in hard-exploration tasks with long horizons and sparse rewards. To tackle this issue, we introduce LOPE: Learning Online with trajectory Preference guidancE, an end-to-end preference-guided RL framework that enhances exploration efficiency in hard-exploration tasks. Our intuition is that LOPE directly adjusts the focus of online exploration by considering human feedback as guidance, avoiding learning a separate reward model from preferences. Specifically, LOPE includes a two-step sequential policy optimization process consisting of trust-region-based policy improvement and preference guidance steps. We reformulate preference guidance as a novel trajectory-wise state marginal matching problem that minimizes the maximum mean discrepancy distance between the preferred trajectories and the learned policy. Furthermore, we provide a theoretical analysis to characterize the performance improvement bound and evaluate the LOPE's effectiveness. When assessed in various challenging hard-exploration environments, LOPE outperforms several state-of-the-art methods regarding convergence rate and overall performance. The code used in this study is available at \url{https://github.com/buaawgj/LOPE}.


Empowering Embodied Manipulation: A Bimanual-Mobile Robot Manipulation Dataset for Household Tasks

arXiv.org Artificial Intelligence

The advancements in embodied AI are increasingly enabling robots to tackle complex real-world tasks, such as household manipulation. However, the deployment of robots in these environments remains constrained by the lack of comprehensive bimanual-mobile robot manipulation data that can be learned. Existing datasets predominantly focus on single-arm manipulation tasks, while the few dual-arm datasets available often lack mobility features, task diversity, comprehensive sensor data, and robust evaluation metrics; they fail to capture the intricate and dynamic nature of household manipulation tasks that bimanual-mobile robots are expected to perform. To overcome these limitations, we propose BRMData, a Bimanual-mobile Robot Manipulation Dataset specifically designed for household applications. BR-MData encompasses 10 diverse household tasks, including single-arm and dual-arm tasks, as well as both tabletop and mobile manipulations, utilizing multi-view and depth-sensing data information. Moreover, BRMData features tasks of increasing difficulty, ranging from single-object to multi-object grasping, non-interactive to human-robot interactive scenarios, and rigid-object to flexible-object manipulation, closely simulating real-world household applications. Additionally, we introduce a novel Manipulation Efficiency Score (MES) metric to evaluate both the precision and efficiency of robot manipulation methods in household tasks. We thoroughly evaluate and analyze the performance of advanced robot manipulation learning methods using our BRMData, aiming to drive the development of bimanual-mobile robot manipulation technologies. The dataset is now open-sourced and available at https://embodiedrobot.github.io/.


Preferred-Action-Optimized Diffusion Policies for Offline Reinforcement Learning

arXiv.org Artificial Intelligence

Offline reinforcement learning (RL) aims to learn optimal policies from previously collected datasets. Recently, due to their powerful representational capabilities, diffusion models have shown significant potential as policy models for offline RL issues. However, previous offline RL algorithms based on diffusion policies generally adopt weighted regression to improve the policy. This approach optimizes the policy only using the collected actions and is sensitive to Q-values, which limits the potential for further performance enhancement. To this end, we propose a novel preferred-action-optimized diffusion policy for offline RL. In particular, an expressive conditional diffusion model is utilized to represent the diverse distribution of a behavior policy. Meanwhile, based on the diffusion model, preferred actions within the same behavior distribution are automatically generated through the critic function. Moreover, an anti-noise preference optimization is designed to achieve policy improvement by using the preferred actions, which can adapt to noise-preferred actions for stable training. Extensive experiments demonstrate that the proposed method provides competitive or superior performance compared to previous state-of-the-art offline RL methods, particularly in sparse reward tasks such as Kitchen and AntMaze. Additionally, we empirically prove the effectiveness of anti-noise preference optimization.


Revolutionizing Finance with LLMs: An Overview of Applications and Insights

arXiv.org Artificial Intelligence

In recent years, Large Language Models (LLMs) like ChatGPT have seen considerable advancements and have been applied in diverse fields. Built on the Transformer architecture, these models are trained on extensive datasets, enabling them to understand and generate human language effectively. In the financial domain, the deployment of LLMs is gaining momentum. These models are being utilized for automating financial report generation, forecasting market trends, analyzing investor sentiment, and offering personalized financial advice. Leveraging their natural language processing capabilities, LLMs can distill key insights from vast financial data, aiding institutions in making informed investment choices and enhancing both operational efficiency and customer satisfaction. In this study, we provide a comprehensive overview of the emerging integration of LLMs into various financial tasks. Additionally, we conducted holistic tests on multiple financial tasks through the combination of natural language instructions. Our findings show that GPT-4 effectively follow prompt instructions across various financial tasks. This survey and evaluation of LLMs in the financial domain aim to deepen the understanding of LLMs' current role in finance for both financial practitioners and LLM researchers, identify new research and application prospects, and highlight how these technologies can be leveraged to solve practical challenges in the finance industry.


Large Language Models for Robotics: Opportunities, Challenges, and Perspectives

arXiv.org Artificial Intelligence

Large language models (LLMs) have undergone significant expansion and have been increasingly integrated across various domains. Notably, in the realm of robot task planning, LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions. However, for embodied tasks, where robots interact with complex environments, text-only LLMs often face challenges due to a lack of compatibility with robotic visual perception. This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks. Additionally, we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions. Our results, based on diverse datasets, indicate that GPT-4V effectively enhances robot performance in embodied tasks. This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights toward bridging the gap in Human-Robot-Environment interaction.


DeID-GPT: Zero-shot Medical Text De-Identification by GPT-4

arXiv.org Artificial Intelligence

The digitization of healthcare has facilitated the sharing and re-using of medical data but has also raised concerns about confidentiality and privacy. HIPAA (Health Insurance Portability and Accountability Act) mandates removing re-identifying information before the dissemination of medical records. Thus, effective and efficient solutions for de-identifying medical data, especially those in free-text forms, are highly needed. While various computer-assisted de-identification methods, including both rule-based and learning-based, have been developed and used in prior practice, such solutions still lack generalizability or need to be fine-tuned according to different scenarios, significantly imposing restrictions in wider use. The advancement of large language models (LLM), such as ChatGPT and GPT-4, have shown great potential in processing text data in the medical domain with zero-shot in-context learning, especially in the task of privacy protection, as these models can identify confidential information by their powerful named entity recognition (NER) capability. In this work, we developed a novel GPT4-enabled de-identification framework (``DeID-GPT") to automatically identify and remove the identifying information. Compared to existing commonly used medical text data de-identification methods, our developed DeID-GPT showed the highest accuracy and remarkable reliability in masking private information from the unstructured medical text while preserving the original structure and meaning of the text. This study is one of the earliest to utilize ChatGPT and GPT-4 for medical text data processing and de-identification, which provides insights for further research and solution development on the use of LLMs such as ChatGPT/GPT-4 in healthcare. Codes and benchmarking data information are available at https://github.com/yhydhx/ChatGPT-API.


Towards Learning a Generalist Model for Embodied Navigation

arXiv.org Artificial Intelligence

Building a generalist agent that can interact with the world is the intriguing target of AI systems, thus spurring the research for embodied navigation, where an agent is required to navigate according to instructions or respond to queries. Despite the major progress attained, previous works primarily focus on task-specific agents and lack generalizability to unseen scenarios. Recently, LLMs have presented remarkable capabilities across various fields, and provided a promising opportunity for embodied navigation. Drawing on this, we propose the first generalist model for embodied navigation, NaviLLM. It adapts LLMs to embodied navigation by introducing schema-based instruction. The schema-based instruction flexibly casts various tasks into generation problems, thereby unifying a wide range of tasks. This approach allows us to integrate diverse data sources from various datasets into the training, equipping NaviLLM with a wide range of capabilities required by embodied navigation. We conduct extensive experiments to evaluate the performance and generalizability of our model. The experimental results demonstrate that our unified model achieves state-of-the-art performance on CVDN, SOON, and ScanQA. Specifically, it surpasses the previous stats-of-the-art method by a significant margin of 29% in goal progress on CVDN. Moreover, our model also demonstrates strong generalizability and presents impressive results on unseen tasks, e.g., embodied question answering and 3D captioning.


Neural Moving Horizon Estimation for Robust Flight Control

arXiv.org Artificial Intelligence

Estimating and reacting to disturbances is crucial for robust flight control of quadrotors. Existing estimators typically require significant tuning for a specific flight scenario or training with extensive ground-truth disturbance data to achieve satisfactory performance. In this paper, we propose a neural moving horizon estimator (NeuroMHE) that can automatically tune its key parameters modeled by a neural network and adapt to different flight scenarios. We achieve this by deriving the analytical gradients of the MHE estimates with respect to the MHE weighting matrices, which enables a seamless embedding of the MHE as a learnable layer into the neural network for highly effective learning. Interestingly, we show that the gradients can be computed efficiently using a Kalman filter in a recursive form. Moreover, we develop a model-based policy gradient algorithm to train NeuroMHE directly from the quadrotor trajectory tracking error without needing the ground-truth disturbance data. The effectiveness of NeuroMHE is verified extensively via both simulations and physical experiments on quadrotors in various challenging flights. Notably, NeuroMHE outperforms a state-of-the-art neural network-based estimator, reducing force estimation errors by up to 76.7%, while using a portable neural network that has only 7.7% of the learnable parameters of the latter. The proposed method is general and can be applied to robust adaptive control of other robotic systems.


Holistic Evaluation of GPT-4V for Biomedical Imaging

arXiv.org Artificial Intelligence

In this paper, we present a large-scale evaluation probing GPT-4V's capabilities and limitations for biomedical image analysis. GPT-4V represents a breakthrough in artificial general intelligence (AGI) for computer vision, with applications in the biomedical domain. We assess GPT-4V's performance across 16 medical imaging categories, including radiology, oncology, ophthalmology, pathology, and more. Tasks include modality recognition, anatomy localization, disease diagnosis, report generation, and lesion detection. The extensive experiments provide insights into GPT-4V's strengths and weaknesses. Results show GPT-4V's proficiency in modality and anatomy recognition but difficulty with disease diagnosis and localization. GPT-4V excels at diagnostic report generation, indicating strong image captioning skills. While promising for biomedical imaging AI, GPT-4V requires further enhancement and validation before clinical deployment. We emphasize responsible development and testing for trustworthy integration of biomedical AGI. This rigorous evaluation of GPT-4V on diverse medical images advances understanding of multimodal large language models (LLMs) and guides future work toward impactful healthcare applications.


SAMAug: Point Prompt Augmentation for Segment Anything Model

arXiv.org Artificial Intelligence

This paper introduces SAMAug, a novel visual point augmentation method for the Segment Anything Model (SAM) that enhances interactive image segmentation performance. SAMAug generates augmented point prompts to provide more information about the user's intention to SAM. Starting with an initial point prompt, SAM produces an initial mask, which is then fed into our proposed SAMAug to generate augmented point prompts. By incorporating these extra points, SAM can generate augmented segmentation masks based on both the augmented point prompts and the initial prompt, resulting in improved segmentation performance. We conducted evaluations using four different point augmentation strategies: random sampling, sampling based on maximum difference entropy, maximum distance, and saliency. Experiment results on the COCO, Fundus, COVID QUEx, and ISIC2018 datasets show that SAMAug can boost SAM's segmentation results, especially using the maximum distance and saliency. SAMAug demonstrates the potential of visual prompt augmentation for computer vision. Codes of SAMAug are available at github.com/yhydhx/SAMAug