Plotting

 Zhang, Yufei


Efficient Learning for Entropy-Regularized Markov Decision Processes via Multilevel Monte Carlo

arXiv.org Machine Learning

Designing efficient learning algorithms with complexity guarantees for Markov decision processes (MDPs) with large or continuous state and action spaces remains a fundamental challenge. We address this challenge for entropy-regularized MDPs with Polish state and action spaces, assuming access to a generative model of the environment. We propose a novel family of multilevel Monte Carlo (MLMC) algorithms that integrate fixed-point iteration with MLMC techniques and a generic stochastic approximation of the Bellman operator. We quantify the precise impact of the chosen approximate Bellman operator on the accuracy of the resulting MLMC estimator. Leveraging this error analysis, we show that using a biased plain MC estimate for the Bellman operator results in quasi-polynomial sample complexity, whereas an unbiased randomized multilevel approximation of the Bellman operator achieves polynomial sample complexity in expectation. Notably, these complexity bounds are independent of the dimensions or cardinalities of the state and action spaces, distinguishing our approach from existing algorithms whose complexities scale with the sizes of these spaces. We validate these theoretical performance guarantees through numerical experiments.


Accuracy of Discretely Sampled Stochastic Policies in Continuous-time Reinforcement Learning

arXiv.org Artificial Intelligence

Stochastic policies are widely used in continuous-time reinforcement learning algorithms. However, executing a stochastic policy and evaluating its performance in a continuous-time environment remain open challenges. This work introduces and rigorously analyzes a policy execution framework that samples actions from a stochastic policy at discrete time points and implements them as piecewise constant controls. We prove that as the sampling mesh size tends to zero, the controlled state process converges weakly to the dynamics with coefficients aggregated according to the stochastic policy. We explicitly quantify the convergence rate based on the regularity of the coefficients and establish an optimal first-order convergence rate for sufficiently regular coefficients. Additionally, we show that the same convergence rates hold with high probability concerning the sampling noise, and further establish a $1/2$-order almost sure convergence when the volatility is not controlled. Building on these results, we analyze the bias and variance of various policy evaluation and policy gradient estimators based on discrete-time observations. Our results provide theoretical justification for the exploratory stochastic control framework in [H. Wang, T. Zariphopoulou, and X.Y. Zhou, J. Mach. Learn. Res., 21 (2020), pp. 1-34].


PolarQuant: Leveraging Polar Transformation for Efficient Key Cache Quantization and Decoding Acceleration

arXiv.org Artificial Intelligence

The KV cache in large language models is a dominant factor in memory usage, limiting their broader applicability. Quantizing the cache to lower bit widths is an effective way to reduce computational costs; however, previous methods struggle with quantizing key vectors due to outliers, resulting in excessive overhead. We propose a novel quantization approach called PolarQuant, which efficiently addresses the outlier challenge. We observe that outliers typically appear in only one of two dimensions, which are rotated together by a specific angle when rotary position embeddings are applied. When represented as two-dimensional vectors, these dimensions exhibit well-structured patterns, with radii and angles smoothly distributed in polar coordinates. This alleviates the challenge of outliers on per-channel quantization, making them well-suited for quantization. Thus, PolarQuant divides key vectors into groups of two-dimensional sub-vectors, encoding them as the corresponding quantized radius and the polar angle, rather than quantizing original key vectors directly. PolarQuant achieves the superior efficiency in KV cache quantization and accelerates the decoding process by turning the query-key inner product into a table lookup, all while maintaining the downstream performance of full-precision models.


Semantic Convergence: Harmonizing Recommender Systems via Two-Stage Alignment and Behavioral Semantic Tokenization

arXiv.org Artificial Intelligence

Large language models (LLMs), endowed with exceptional reasoning capabilities, are adept at discerning profound user interests from historical behaviors, thereby presenting a promising avenue for the advancement of recommendation systems. However, a notable discrepancy persists between the sparse collaborative semantics typically found in recommendation systems and the dense token representations within LLMs. In our study, we propose a novel framework that harmoniously merges traditional recommendation models with the prowess of LLMs. We initiate this integration by transforming ItemIDs into sequences that align semantically with the LLMs space, through the proposed Alignment Tokenization module. Additionally, we design a series of specialized supervised learning tasks aimed at aligning collaborative signals with the subtleties of natural language semantics. To ensure practical applicability, we optimize online inference by pre-caching the top-K results for each user, reducing latency and improving effciency. Extensive experimental evidence indicates that our model markedly improves recall metrics and displays remarkable scalability of recommendation systems.


Analytic Continual Test-Time Adaptation for Multi-Modality Corruption

arXiv.org Artificial Intelligence

Test-Time Adaptation (TTA) aims to help pre-trained model bridge the gap between source and target datasets using only the pre-trained model and unlabelled test data. A key objective of TTA is to address domain shifts in test data caused by corruption, such as weather changes, noise, or sensor malfunctions. Multi-Modal Continual Test-Time Adaptation (MM-CTTA), an extension of TTA with better real-world applications, further allows pre-trained models to handle multi-modal inputs and adapt to continuously-changing target domains. MM-CTTA typically faces challenges including error accumulation, catastrophic forgetting, and reliability bias, with few existing approaches effectively addressing these issues in multi-modal corruption scenarios. In this paper, we propose a novel approach, Multi-modality Dynamic Analytic Adapter (MDAA), for MM-CTTA tasks. We innovatively introduce analytic learning into TTA, using the Analytic Classifiers (ACs) to prevent model forgetting. Additionally, we develop Dynamic Selection Mechanism (DSM) and Soft Pseudo-label Strategy (SPS), which enable MDAA to dynamically filter reliable samples and integrate information from different modalities. Extensive experiments demonstrate that MDAA achieves state-of-theart performance on MM-CTTA tasks while ensuring reliable model adaptation. Test-Time Adaptation (TTA) aims to help the pre-trained model bridge the gap between the source domain and the target domain (Wang et al., 2021; Liang et al., 2024).


Entropy annealing for policy mirror descent in continuous time and space

arXiv.org Artificial Intelligence

Entropy regularization has been extensively used in policy optimization algorithms to regularize the optimization landscape and accelerate convergence; however, it comes at the cost of introducing an additional regularization bias. This work quantifies the impact of entropy regularization on the convergence of policy gradient methods for stochastic exit time control problems. We analyze a continuous-time policy mirror descent dynamics, which updates the policy based on the gradient of an entropy-regularized value function and adjusts the strength of entropy regularization as the algorithm progresses. We prove that with a fixed entropy level, the dynamics converges exponentially to the optimal solution of the regularized problem. We further show that when the entropy level decays at suitable polynomial rates, the annealed flow converges to the solution of the unregularized problem at a rate of $\mathcal O(1/S)$ for discrete action spaces and, under suitable conditions, at a rate of $\mathcal O(1/\sqrt{S})$ for general action spaces, with $S$ being the gradient flow time. This paper explains how entropy regularization improves policy optimization, even with the true gradient, from the perspective of convergence rate.


Harmonizing Human Insights and AI Precision: Hand in Hand for Advancing Knowledge Graph Task

arXiv.org Artificial Intelligence

Knowledge graph embedding (KGE) has caught significant interest for its effectiveness in knowledge graph completion (KGC), specifically link prediction (LP), with recent KGE models cracking the LP benchmarks. Despite the rapidly growing literature, insufficient attention has been paid to the cooperation between humans and AI on KG. However, humans' capability to analyze graphs conceptually may further improve the efficacy of KGE models with semantic information. To this effect, we carefully designed a human-AI team (HAIT) system dubbed KG-HAIT, which harnesses the human insights on KG by leveraging fully human-designed ad-hoc dynamic programming (DP) on KG to produce human insightful feature (HIF) vectors that capture the subgraph structural feature and semantic similarities. By integrating HIF vectors into the training of KGE models, notable improvements are observed across various benchmarks and metrics, accompanied by accelerated model convergence. Our results underscore the effectiveness of human-designed DP in the task of LP, emphasizing the pivotal role of collaboration between humans and AI on KG. We open avenues for further exploration and innovation through KG-HAIT, paving the way towards more effective and insightful KG analysis techniques.


$\epsilon$-Policy Gradient for Online Pricing

arXiv.org Machine Learning

Combining model-based and model-free reinforcement learning approaches, this paper proposes and analyzes an $\epsilon$-policy gradient algorithm for the online pricing learning task. The algorithm extends $\epsilon$-greedy algorithm by replacing greedy exploitation with gradient descent step and facilitates learning via model inference. We optimize the regret of the proposed algorithm by quantifying the exploration cost in terms of the exploration probability $\epsilon$ and the exploitation cost in terms of the gradient descent optimization and gradient estimation errors. The algorithm achieves an expected regret of order $\mathcal{O}(\sqrt{T})$ (up to a logarithmic factor) over $T$ trials.


UniDCP: Unifying Multiple Medical Vision-language Tasks via Dynamic Cross-modal Learnable Prompts

arXiv.org Artificial Intelligence

Medical vision-language pre-training (Med-VLP) models have recently accelerated the fast-growing medical diagnostics application. However, most Med-VLP models learn task-specific representations independently from scratch, thereby leading to great inflexibility when they work across multiple fine-tuning tasks. In this work, we propose UniDCP, a Unified medical vision-language model with Dynamic Cross-modal learnable Prompts, which can be plastically applied to multiple medical vision-language tasks. Specifically, we explicitly construct a unified framework to harmonize diverse inputs from multiple pretraining tasks by leveraging cross-modal prompts for unification, which accordingly can accommodate heterogeneous medical fine-tuning tasks. Furthermore, we conceive a dynamic cross-modal prompt optimizing strategy that optimizes the prompts within the shareable space for implicitly processing the shareable clinic knowledge. UniDCP is the first Med-VLP model capable of performing all 8 medical uni-modal and cross-modal tasks over 14 corresponding datasets, consistently yielding superior results over diverse state-of-the-art methods.


Convergence of policy gradient methods for finite-horizon stochastic linear-quadratic control problems

arXiv.org Artificial Intelligence

We study the global linear convergence of policy gradient (PG) methods for finite-horizon continuous-time exploratory linear-quadratic control (LQC) problems. The setting includes stochastic LQC problems with indefinite costs and allows additional entropy regularisers in the objective. We consider a continuous-time Gaussian policy whose mean is linear in the state variable and whose covariance is state-independent. Contrary to discrete-time problems, the cost is noncoercive in the policy and not all descent directions lead to bounded iterates. We propose geometry-aware gradient descents for the mean and covariance of the policy using the Fisher geometry and the Bures-Wasserstein geometry, respectively. The policy iterates are shown to satisfy an a-priori bound, and converge globally to the optimal policy with a linear rate. We further propose a novel PG method with discrete-time policies. The algorithm leverages the continuous-time analysis, and achieves a robust linear convergence across different action frequencies. A numerical experiment confirms the convergence and robustness of the proposed algorithm.