Not enough data to create a plot.
Try a different view from the menu above.
Zhang, Weiyu
SRLCG: Self-Rectified Large-Scale Code Generation with Multidimensional Chain-of-Thought and Dynamic Backtracking
Ma, Hongru, Liang, Yanjie, Si, Jiasheng, Zhang, Weiyu, Guan, Hongjiao, Zheng, Chaoqun, Xu, Bing, Lu, Wenpeng
Large language models (LLMs) have revolutionized code generation, significantly enhancing developer productivity. However, for a vast number of users with minimal coding knowledge, LLMs provide little support, as they primarily generate isolated code snippets rather than complete, large-scale project code. Without coding expertise, these users struggle to interpret, modify, and iteratively refine the outputs of LLMs, making it impossible to assemble a complete project. To address this issue, we propose Self-Rectified Large-Scale Code Generator (SRLCG), a framework that generates complete multi-file project code from a single prompt. SRLCG employs a novel multidimensional chain-of-thought (CoT) and self-rectification to guide LLMs in generating correct and robust code files, then integrates them into a complete and coherent project using our proposed dynamic backtracking algorithm. Experimental results show that SRLCG generates code 15x longer than DeepSeek-V3, 16x longer than GPT-4, and at least 10x longer than other leading CoT-based baselines. Furthermore, they confirm its improved correctness, robustness, and performance compared to baselines in large-scale code generation.
BianCang: A Traditional Chinese Medicine Large Language Model
Wei, Sibo, Peng, Xueping, Wang, Yi-fei, Si, Jiasheng, Zhang, Weiyu, Lu, Wenpeng, Wu, Xiaoming, Wang, Yinglong
The rise of large language models (LLMs) has driven significant progress in medical applications, including traditional Chinese medicine (TCM). However, current medical LLMs struggle with TCM diagnosis and syndrome differentiation due to substantial differences between TCM and modern medical theory, and the scarcity of specialized, high-quality corpora. This paper addresses these challenges by proposing BianCang, a TCM-specific LLM, using a two-stage training process that first injects domain-specific knowledge and then aligns it through targeted stimulation. To enhance diagnostic and differentiation capabilities, we constructed pre-training corpora, instruction-aligned datasets based on real hospital records, and the ChP-TCM dataset derived from the Pharmacopoeia of the People's Republic of China. We compiled extensive TCM and medical corpora for continuous pre-training and supervised fine-tuning, building a comprehensive dataset to refine the model's understanding of TCM. Evaluations across 11 test sets involving 29 models and 4 tasks demonstrate the effectiveness of BianCang, offering valuable insights for future research. Code, datasets, and models are available at https://github.com/QLU-NLP/BianCang.
Medical Question Summarization with Entity-driven Contrastive Learning
Wei, Sibo, Lu, Wenpeng, Peng, Xueping, Wang, Shoujin, Wang, Yi-Fei, Zhang, Weiyu
By summarizing longer consumer health questions into shorter and essential ones, medical question answering (MQA) systems can more accurately understand consumer intentions and retrieve suitable answers. However, medical question summarization is very challenging due to obvious distinctions in health trouble descriptions from patients and doctors. Although existing works have attempted to utilize Seq2Seq, reinforcement learning, or contrastive learning to solve the problem, two challenges remain: how to correctly capture question focus to model its semantic intention, and how to obtain reliable datasets to fairly evaluate performance. To address these challenges, this paper proposes a novel medical question summarization framework using entity-driven contrastive learning (ECL). ECL employs medical entities in frequently asked questions (FAQs) as focuses and devises an effective mechanism to generate hard negative samples. This approach forces models to pay attention to the crucial focus information and generate more ideal question summarization. Additionally, we find that some MQA datasets suffer from serious data leakage problems, such as the iCliniq dataset's 33% duplicate rate. To evaluate the related methods fairly, this paper carefully checks leaked samples to reorganize more reasonable datasets. Extensive experiments demonstrate that our ECL method outperforms state-of-the-art methods by accurately capturing question focus and generating medical question summaries. The code and datasets are available at https://github.com/yrbobo/MQS-ECL.