Goto

Collaborating Authors

 Zhang, Ningyu


Conceptualized Representation Learning for Chinese Biomedical Text Mining

arXiv.org Artificial Intelligence

Biomedical text mining is becoming increasingly important as the number of biomedical documents and web data rapidly grows. Recently, word representation models such as BERT has gained popularity among researchers. However, it is difficult to estimate their performance on datasets containing biomedical texts as the word distributions of general and biomedical corpora are quite different. Moreover, the medical domain has long-tail concepts and terminologies that are difficult to be learned via language models. For the Chinese biomedical text, it is more difficult due to its complex structure and the variety of phrase combinations. In this paper, we investigate how the recently introduced pre-trained language model BERT can be adapted for Chinese biomedical corpora and propose a novel conceptualized representation learning approach. We also release a new Chinese Biomedical Language Understanding Evaluation benchmark (\textbf{ChineseBLUE}). We examine the effectiveness of Chinese pre-trained models: BERT, BERT-wwm, RoBERTa, and our approach. Experimental results on the benchmark show that our approach could bring significant gain. We release the pre-trained model on GitHub: https://github.com/alibaba-research/ChineseBLUE.


Relation Adversarial Network for Low Resource Knowledge Graph Completion

arXiv.org Artificial Intelligence

Knowledge Graph Completion (KGC) has been proposed to improve Knowledge Graphs by filling in missing connections via link prediction or relation extraction. One of the main difficulties for KGC is a low resource problem. Previous approaches assume sufficient training triples to learn versatile vectors for entities and relations, or a satisfactory number of labeled sentences to train a competent relation extraction model. However, low resource relations are very common in KGs, and those newly added relations often do not have many known samples for training. In this work, we aim at predicting new facts under a challenging setting where only limited training instances are available. We propose a general framework called Weighted Relation Adversarial Network, which utilizes an adversarial procedure to help adapt knowledge/features learned from high resource relations to different but related low resource relations. Specifically, the framework takes advantage of a relation discriminator to distinguish between samples from different relations, and help learn relation-invariant features more transferable from source relations to target relations. Experimental results show that the proposed approach outperforms previous methods regarding low resource settings for both link prediction and relation extraction.


Meta-Learning with Dynamic-Memory-Based Prototypical Network for Few-Shot Event Detection

arXiv.org Artificial Intelligence

Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.


Context-aware Deep Model for Entity Recommendation in Search Engine at Alibaba

arXiv.org Artificial Intelligence

Entity recommendation, providing search users with an improved experience via assisting them in finding related entities for a given query, has become an indispensable feature of today's search engines. Existing studies typically only consider the queries with explicit entities. They usually fail to handle complex queries that without entities, such as "what food is good for cold weather", because their models could not infer the underlying meaning of the input text. In this work, we believe that contexts convey valuable evidence that could facilitate the semantic modeling of queries, and take them into consideration for entity recommendation. In order to better model the semantics of queries and entities, we learn the representation of queries and entities jointly with attentive deep neural networks. We evaluate our approach using large-scale, real-world search logs from a widely used commercial Chinese search engine. Our system has been deployed in ShenMa Search Engine and you can fetch it in UC Browser of Alibaba. Results from online A/B test suggest that the impression efficiency of click-through rate increased by 5.1% and page view increased by 5.5%.


Transfer Learning for Relation Extraction via Relation-Gated Adversarial Learning

arXiv.org Machine Learning

Relation extraction aims to extract relational facts from sentences. Previous models mainly rely on manually labeled datasets, seed instances or human-crafted patterns, and distant supervision. However, the human annotation is expensive, while human-crafted patterns suffer from semantic drift and distant supervision samples are usually noisy. Domain adaptation methods enable leveraging labeled data from a different but related domain. However, different domains usually have various textual relation descriptions and different label space (the source label space is usually a superset of the target label space). To solve these problems, we propose a novel model of relation-gated adversarial learning for relation extraction, which extends the adversarial based domain adaptation. Experimental results have shown that the proposed approach outperforms previous domain adaptation methods regarding partial domain adaptation and can improve the accuracy of distance supervised relation extraction through fine-tuning. 1 Introduction Relation extraction (RE) is devoted to extracting relational facts from sentences, which can be applied to many natural language processing (NLP) applications such as knowledge base construction (Wu and Weld, 2010) and question answering (Dai et al., 2016).


Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks

arXiv.org Artificial Intelligence

We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate "few-shot" models for classes existing at the tail of the class distribution, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.


Attention-Based Capsule Networks with Dynamic Routing for Relation Extraction

arXiv.org Artificial Intelligence

A capsule is a group of neurons, whose activity vector represents the instantiation parameters of a specific type of entity. In this paper, we explore the capsule networks used for relation extraction in a multi-instance multi-label learning framework and propose a novel neural approach based on capsule networks with attention mechanisms. We evaluate our method with different benchmarks, and it is demonstrated that our method improves the precision of the predicted relations. Particularly, we show that capsule networks improve multiple entity pairs relation extraction.