Zhang, Linjun
Analyzing and Mitigating Object Hallucination in Large Vision-Language Models
Zhou, Yiyang, Cui, Chenhang, Yoon, Jaehong, Zhang, Linjun, Deng, Zhun, Finn, Chelsea, Bansal, Mohit, Yao, Huaxiu
Large vision-language models (LVLMs) have shown remarkable abilities in understanding visual information with human languages. However, LVLMs still suffer from object hallucination, which is the problem of generating descriptions that include objects that do not actually exist in the images. This can negatively impact many vision-language tasks, such as visual summarization and reasoning. To address this issue, we propose a simple yet powerful algorithm, LVLM Hallucination Revisor (LURE), to post-hoc rectify object hallucination in LVLMs by reconstructing less hallucinatory descriptions. LURE is grounded in a rigorous statistical analysis of the key factors underlying object hallucination, including co-occurrence (the frequent appearance of certain objects alongside others in images), uncertainty (objects with higher uncertainty during LVLM decoding), and object position (hallucination often appears in the later part of the generated text). LURE can also be seamlessly integrated with any LVLMs. We evaluate LURE on six open-source LVLMs, achieving a 23% improvement in general object hallucination evaluation metrics over the previous best approach. In both GPT and human evaluations, LURE consistently ranks at the top. Our data and code are available at https://github.com/YiyangZhou/LURE.
Multi-dimensional domain generalization with low-rank structures
Li, Sai, Zhang, Linjun
In conventional statistical and machine learning methods, it is typically assumed that the test data are identically distributed with the training data. However, this assumption does not always hold, especially in applications where the target population are not well-represented in the training data. This is a notable issue in health-related studies, where specific ethnic populations may be underrepresented, posing a significant challenge for researchers aiming to make statistical inferences about these minority groups. In this work, we present a novel approach to addressing this challenge in linear regression models. We organize the model parameters for all the sub-populations into a tensor. By studying a structured tensor completion problem, we can achieve robust domain generalization, i.e., learning about sub-populations with limited or no available data. Our method novelly leverages the structure of group labels and it can produce more reliable and interpretable generalization results. We establish rigorous theoretical guarantees for the proposed method and demonstrate its minimax optimality. To validate the effectiveness of our approach, we conduct extensive numerical experiments and a real data study focused on education level prediction for multiple ethnic groups, comparing our results with those obtained using other existing methods.
What Should Data Science Education Do with Large Language Models?
Tu, Xinming, Zou, James, Su, Weijie J., Zhang, Linjun
The rapid advances of large language models (LLMs), such as ChatGPT, are revolutionizing data science and statistics. These state-of-the-art tools can streamline complex processes. As a result, it reshapes the role of data scientists. We argue that LLMs are transforming the responsibilities of data scientists, shifting their focus from hands-on coding, data-wrangling and conducting standard analyses to assessing and managing analyses performed by these automated AIs. This evolution of roles is reminiscent of the transition from a software engineer to a product manager. We illustrate this transition with concrete data science case studies using LLMs in this paper. These developments necessitate a meaningful evolution in data science education. Pedagogy must now place greater emphasis on cultivating diverse skillsets among students, such as LLM-informed creativity, critical thinking, AI-guided programming. LLMs can also play a significant role in the classroom as interactive teaching and learning tools, contributing to personalized education. This paper discusses the opportunities, resources and open challenges for each of these directions. As with any transformative technology, integrating LLMs into education calls for careful consideration. While LLMs can perform repetitive tasks efficiently, it's crucial to remember that their role is to supplement human intelligence and creativity, not to replace it. Therefore, the new era of data science education should balance the benefits of LLMs while fostering complementary human expertise and innovations. In conclusion, the rise of LLMs heralds a transformative period for data science and its education. This paper seeks to shed light on the emerging trends, potential opportunities, and challenges accompanying this paradigm shift, hoping to spark further discourse and investigation into this exciting, uncharted territory.
Safeguarding Data in Multimodal AI: A Differentially Private Approach to CLIP Training
Huang, Alyssa, Liu, Peihan, Nakada, Ryumei, Zhang, Linjun, Zhang, Wanrong
The surge in multimodal AI's success has sparked concerns over data privacy in vision-and-language tasks. While CLIP has revolutionized multimodal learning through joint training on images and text, its potential to unintentionally disclose sensitive information necessitates the integration of privacy-preserving mechanisms. We introduce a differentially private adaptation of the Contrastive Language-Image Pretraining (CLIP) model that effectively addresses privacy concerns while retaining accuracy. Our proposed method, Dp-CLIP, is rigorously evaluated on benchmark datasets encompassing diverse vision-and-language tasks such as image classification and visual question answering. We demonstrate that our approach retains performance on par with the standard non-private CLIP model. Furthermore, we analyze our proposed algorithm under linear representation settings. We derive the convergence rate of our algorithm and show a trade-off between utility and privacy when gradients are clipped per-batch and the loss function does not satisfy smoothness conditions assumed in the literature for the analysis of DP-SGD.
Discover and Cure: Concept-aware Mitigation of Spurious Correlation
Wu, Shirley, Yuksekgonul, Mert, Zhang, Linjun, Zou, James
Deep neural networks often rely on spurious correlations to make predictions, which hinders generalization beyond training environments. For instance, models that associate cats with bed backgrounds can fail to predict the existence of cats in other environments without beds. Mitigating spurious correlations is crucial in building trustworthy models. However, the existing works lack transparency to offer insights into the mitigation process. In this work, we propose an interpretable framework, Discover and Cure (DISC), to tackle the issue. With human-interpretable concepts, DISC iteratively 1) discovers unstable concepts across different environments as spurious attributes, then 2) intervenes on the training data using the discovered concepts to reduce spurious correlation. Across systematic experiments, DISC provides superior generalization ability and interpretability than the existing approaches. Specifically, it outperforms the state-of-the-art methods on an object recognition task and a skin-lesion classification task by 7.5% and 9.6%, respectively. Additionally, we offer theoretical analysis and guarantees to understand the benefits of models trained by DISC. Code and data are available at https://github.com/Wuyxin/DISC.
Freeze then Train: Towards Provable Representation Learning under Spurious Correlations and Feature Noise
Ye, Haotian, Zou, James, Zhang, Linjun
The existence of spurious correlations such as image backgrounds in the training environment can make empirical risk minimization (ERM) perform badly in the test environment. To address this problem, Kirichenko et al. (2022) empirically found that the core features that are related to the outcome can still be learned well even with the presence of spurious correlations. This opens a promising strategy to first train a feature learner rather than a classifier, and then perform linear probing (last layer retraining) in the test environment. However, a theoretical understanding of when and why this approach works is lacking. In this paper, we find that core features are only learned well when their associated non-realizable noise is smaller than that of spurious features, which is not necessarily true in practice. We provide both theories and experiments to support this finding and to illustrate the importance of non-realizable noise. Moreover, we propose an algorithm called Freeze then Train (FTT), that first freezes certain salient features and then trains the rest of the features using ERM. We theoretically show that FTT preserves features that are more beneficial to test time probing. Across two commonly used spurious correlation datasets, FTT outperforms ERM, IRM, JTT and CVaR-DRO, with substantial improvement in accuracy (by 4.5%) when the feature noise is large. FTT also performs better on general distribution shift benchmarks.
Understanding Multimodal Contrastive Learning and Incorporating Unpaired Data
Nakada, Ryumei, Gulluk, Halil Ibrahim, Deng, Zhun, Ji, Wenlong, Zou, James, Zhang, Linjun
Language-supervised vision models have recently attracted great attention in computer vision. A common approach to build such models is to use contrastive learning on paired data across the two modalities, as exemplified by Contrastive Language-Image Pre-Training (CLIP). In this paper, under linear representation settings, (i) we initiate the investigation of a general class of nonlinear loss functions for multimodal contrastive learning (MMCL) including CLIP loss and show its connection to singular value decomposition (SVD). Namely, we show that each step of loss minimization by gradient descent can be seen as performing SVD on a contrastive cross-covariance matrix. Based on this insight, (ii) we analyze the performance of MMCL. We quantitatively show that the feature learning ability of MMCL can be better than that of unimodal contrastive learning applied to each modality even under the presence of wrongly matched pairs. This characterizes the robustness of MMCL to noisy data. Furthermore, when we have access to additional unpaired data, (iii) we propose a new MMCL loss that incorporates additional unpaired datasets. We show that the algorithm can detect the ground-truth pairs and improve performance by fully exploiting unpaired datasets. The performance of the proposed algorithm was verified by numerical experiments.
Score Attack: A Lower Bound Technique for Optimal Differentially Private Learning
Cai, T. Tony, Wang, Yichen, Zhang, Linjun
Achieving optimal statistical performance while ensuring the privacy of personal data is a challenging yet crucial objective in modern data analysis. However, characterizing the optimality, particularly the minimax lower bound, under privacy constraints is technically difficult. To address this issue, we propose a novel approach called the score attack, which provides a lower bound on the differential-privacy-constrained minimax risk of parameter estimation. The score attack method is based on the tracing attack concept in differential privacy and can be applied to any statistical model with a well-defined score statistic. It can optimally lower bound the minimax risk of estimating unknown model parameters, up to a logarithmic factor, while ensuring differential privacy for a range of statistical problems. We demonstrate the effectiveness and optimality of this general method in various examples, such as the generalized linear model in both classical and high-dimensional sparse settings, the Bradley-Terry-Luce model for pairwise comparisons, and nonparametric regression over the Sobolev class.
HappyMap: A Generalized Multi-calibration Method
Deng, Zhun, Dwork, Cynthia, Zhang, Linjun
Multi-calibration is a powerful and evolving concept originating in the field of algorithmic fairness. For a predictor $f$ that estimates the outcome $y$ given covariates $x$, and for a function class $\mathcal{C}$, multi-calibration requires that the predictor $f(x)$ and outcome $y$ are indistinguishable under the class of auditors in $\mathcal{C}$. Fairness is captured by incorporating demographic subgroups into the class of functions~$\mathcal{C}$. Recent work has shown that, by enriching the class $\mathcal{C}$ to incorporate appropriate propensity re-weighting functions, multi-calibration also yields target-independent learning, wherein a model trained on a source domain performs well on unseen, future, target domains(approximately) captured by the re-weightings. Formally, multi-calibration with respect to $\mathcal{C}$ bounds $\big|\mathbb{E}_{(x,y)\sim \mathcal{D}}[c(f(x),x)\cdot(f(x)-y)]\big|$ for all $c \in \mathcal{C}$. In this work, we view the term $(f(x)-y)$ as just one specific mapping, and explore the power of an enriched class of mappings. We propose \textit{HappyMap}, a generalization of multi-calibration, which yields a wide range of new applications, including a new fairness notion for uncertainty quantification (conformal prediction), a novel technique for conformal prediction under covariate shift, and a different approach to analyzing missing data, while also yielding a unified understanding of several existing seemingly disparate algorithmic fairness notions and target-independent learning approaches. We give a single \textit{HappyMap} meta-algorithm that captures all these results, together with a sufficiency condition for its success.
FIFA: Making Fairness More Generalizable in Classifiers Trained on Imbalanced Data
Deng, Zhun, Zhang, Jiayao, Zhang, Linjun, Ye, Ting, Coley, Yates, Su, Weijie J., Zou, James
Algorithmic fairness plays an important role in machine learning and imposing fairness constraints during learning is a common approach. However, many datasets are imbalanced in certain label classes (e.g. "healthy") and sensitive subgroups (e.g. "older patients"). Empirically, this imbalance leads to a lack of generalizability not only of classification, but also of fairness properties, especially in over-parameterized models. For example, fairness-aware training may ensure equalized odds (EO) on the training data, but EO is far from being satisfied on new users. In this paper, we propose a theoretically-principled, yet Flexible approach that is Imbalance-Fairness-Aware (FIFA). Specifically, FIFA encourages both classification and fairness generalization and can be flexibly combined with many existing fair learning methods with logits-based losses. While our main focus is on EO, FIFA can be directly applied to achieve equalized opportunity (EqOpt); and under certain conditions, it can also be applied to other fairness notions. We demonstrate the power of FIFA by combining it with a popular fair classification algorithm, and the resulting algorithm achieves significantly better fairness generalization on several real-world datasets.