Not enough data to create a plot.
Try a different view from the menu above.
Zhang, Di
LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning
Zhang, Di, Wu, Jianbo, Lei, Jingdi, Che, Tong, Li, Jiatong, Xie, Tong, Huang, Xiaoshui, Zhang, Shufei, Pavone, Marco, Li, Yuqiang, Ouyang, Wanli, Zhou, Dongzhan
This paper presents an advanced mathematical problem-solving framework, LLaMA-Berry, for enhancing the mathematical reasoning ability of Large Language Models (LLMs). The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path and utilizes a pairwise reward model to evaluate different paths globally. By leveraging the self-critic and rewriting capabilities of LLMs, Self-Refine applied to MCTS (SR-MCTS) overcomes the inefficiencies and limitations of conventional step-wise and greedy search algorithms by fostering a more efficient exploration of solution spaces. Pairwise Preference Reward Model~(PPRM), inspired by Reinforcement Learning from Human Feedback (RLHF), is then used to model pairwise preferences between solutions, utilizing an Enhanced Borda Count (EBC) method to synthesize these preferences into a global ranking score to find better answers. This approach addresses the challenges of scoring variability and non-independent distributions in mathematical reasoning tasks. The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability compared to existing methods like ToT and rStar, particularly in complex Olympiad-level benchmarks, including GPQA, AIME24 and AMC23.
MolReFlect: Towards In-Context Fine-grained Alignments between Molecules and Texts
Li, Jiatong, Liu, Yunqing, Liu, Wei, Le, Jingdi, Zhang, Di, Fan, Wenqi, Zhou, Dongzhan, Li, Yuqiang, Li, Qing
Molecule discovery is a pivotal research field, impacting everything from the medicines we take to the materials we use. Recently, Large Language Models (LLMs) have been widely adopted in molecule understanding and generation, yet the alignments between molecules and their corresponding captions remain a significant challenge. Previous endeavours often treat the molecule as a general SMILES string or molecular graph, neglecting the fine-grained alignments between the molecular sub-structures and the descriptive textual phrases, which are crucial for accurate and explainable predictions. In this case, we introduce MolReFlect, a novel teacher-student framework designed to contextually perform the molecule-caption alignments in a fine-grained way. Our approach initially leverages a larger teacher LLM to label the detailed alignments by directly extracting critical phrases from molecule captions or SMILES strings and implying them to corresponding sub-structures or characteristics. To refine these alignments, we propose In-Context Selective Reflection, which retrieves previous extraction results as context examples for teacher LLM to reflect and lets a smaller student LLM select from in-context reflection and previous extraction results. Finally, we enhance the learning process of the student LLM through Chain-of-Thought In-Context Molecule Tuning, integrating the fine-grained alignments and the reasoning processes within the Chain-of-Thought format. Our experimental results demonstrate that MolReFlect enables LLMs like Mistral-7B to significantly outperform the previous baselines, achieving SOTA performance on the ChEBI-20 dataset. This advancement not only enhances the generative capabilities of LLMs in the molecule-caption translation task, but also contributes to a more explainable framework.
DMQR-RAG: Diverse Multi-Query Rewriting for RAG
Li, Zhicong, Wang, Jiahao, Jiang, Zhishu, Mao, Hangyu, Chen, Zhongxia, Du, Jiazhen, Zhang, Yuanxing, Zhang, Fuzheng, Zhang, Di, Liu, Yong
Large language models often encounter challenges with static knowledge and hallucinations, which undermine their reliability. Retrieval-augmented generation (RAG) mitigates these issues by incorporating external information. However, user queries frequently contain noise and intent deviations, necessitating query rewriting to improve the relevance of retrieved documents. In this paper, we introduce DMQR-RAG, a Diverse Multi-Query Rewriting framework designed to improve the performance of both document retrieval and final responses in RAG. Specifically, we investigate how queries with varying information quantities can retrieve a diverse array of documents, presenting four rewriting strategies that operate at different levels of information to enhance the performance of baseline approaches. Additionally, we propose an adaptive strategy selection method that minimizes the number of rewrites while optimizing overall performance. Our methods have been rigorously validated through extensive experiments conducted in both academic and industry settings.
Kwai-STaR: Transform LLMs into State-Transition Reasoners
Lu, Xingyu, Hu, Yuhang, Liu, Changyi, Zhang, Tianke, Yang, Zhenyu, Ding, Zhixiang, Qian, Shengsheng, Du, Meng, Kang, Ruiwen, Tang, Kaiyu, Yang, Fan, Gao, Tingting, Zhang, Di, Zheng, Hai-Tao, Wen, Bin
Mathematical reasoning presents a significant challenge to the cognitive capabilities of LLMs. Various methods have been proposed to enhance the mathematical ability of LLMs. However, few recognize the value of state transition for LLM reasoning. In this work, we define mathematical problem-solving as a process of transiting from an initial unsolved state to the final resolved state, and propose Kwai-STaR framework, which transforms LLMs into State-Transition Reasoners to improve their intuitive reasoning capabilities. Our approach comprises three main steps: (1) Define the state space tailored to the mathematical reasoning. (2) Generate state-transition data based on the state space. (3) Convert original LLMs into State-Transition Reasoners via a curricular training strategy. Our experiments validate the effectiveness of Kwai-STaR in enhancing mathematical reasoning: After training on the small-scale Kwai-STaR dataset, general LLMs, including Mistral-7B and LLaMA-3, achieve considerable performance gain on the GSM8K and GSM-Hard dataset. Additionally, the state transition-based design endows Kwai-STaR with remarkable training and inference efficiency. Further experiments are underway to establish the generality of Kwai-STaR.
ERABAL: Enhancing Role-Playing Agents through Boundary-Aware Learning
Tang, Yihong, Ou, Jiao, Liu, Che, Zhang, Fuzheng, Zhang, Di, Gai, Kun
Role-playing is an emerging application in the field of Human-Computer Interaction (HCI), primarily implemented through the alignment training of a large language model (LLM) with assigned characters. Despite significant progress, role-playing agents (RPLAs) still struggle with maintaining role-consistency across conversations, particularly when confronted with boundary queries subtly related to character attributes. In this paper, we present ERABAL, a framework aimed at enhancing RPLAs' role-playing capabilities through boundary-aware learning. ERABAL encompasses a generation pipeline for role-specific dialogues and a concomitant methodology for alignment training. Through comprehensive evaluations, we demonstrate that ERABAL is both efficient and effective. By training with significantly fewer dialogues than those used in leading approaches, ERABAL achieves notable improvements across WikiRoleEval, CharacterEval, and the role-playing subset of MT-Bench compared to the generalist baseline models. Our code and datasets will be made publicly available to support further research.
Koala-36M: A Large-scale Video Dataset Improving Consistency between Fine-grained Conditions and Video Content
Wang, Qiuheng, Shi, Yukai, Ou, Jiarong, Chen, Rui, Lin, Ke, Wang, Jiahao, Jiang, Boyuan, Yang, Haotian, Zheng, Mingwu, Tao, Xin, Yang, Fei, Wan, Pengfei, Zhang, Di
As visual generation technologies continue to advance, the scale of video datasets has expanded rapidly, and the quality of these datasets is critical to the performance of video generation models. We argue that temporal splitting, detailed captions, and video quality filtering are three key factors that determine dataset quality. However, existing datasets exhibit various limitations in these areas. To address these challenges, we introduce Koala-36M, a large-scale, high-quality video dataset featuring accurate temporal splitting, detailed captions, and superior video quality. The core of our approach lies in improving the consistency between fine-grained conditions and video content. Specifically, we employ a linear classifier on probability distributions to enhance the accuracy of transition detection, ensuring better temporal consistency. We then provide structured captions for the splitted videos, with an average length of 200 words, to improve text-video alignment. Additionally, we develop a Video Training Suitability Score (VTSS) that integrates multiple sub-metrics, allowing us to filter high-quality videos from the original corpus. Finally, we incorporate several metrics into the training process of the generation model, further refining the fine-grained conditions. Our experiments demonstrate the effectiveness of our data processing pipeline and the quality of the proposed Koala-36M dataset. Our dataset and code will be released at https://koala36m.github.io/.
Focus On What Matters: Separated Models For Visual-Based RL Generalization
Zhang, Di, Lv, Bowen, Zhang, Hai, Yang, Feifan, Zhao, Junqiao, Yu, Hang, Huang, Chang, Zhou, Hongtu, Ye, Chen, Jiang, Changjun
A primary challenge for visual-based Reinforcement Learning (RL) is to generalize effectively across unseen environments. Although previous studies have explored different auxiliary tasks to enhance generalization, few adopt image reconstruction due to concerns about exacerbating overfitting to task-irrelevant features during training. Perceiving the pre-eminence of image reconstruction in representation learning, we propose SMG (Separated Models for Generalization), a novel approach that exploits image reconstruction for generalization. SMG introduces two model branches to extract task-relevant and task-irrelevant representations separately from visual observations via cooperatively reconstruction. Built upon this architecture, we further emphasize the importance of task-relevant features for generalization. Specifically, SMG incorporates two additional consistency losses to guide the agent's focus toward task-relevant areas across different scenarios, thereby achieving free from overfitting. Extensive experiments in DMC demonstrate the SOTA performance of SMG in generalization, particularly excelling in video-background settings. Evaluations on robotic manipulation tasks further confirm the robustness of SMG in real-world applications. Source code is available at https://anonymous.4open.science/r/SMG/.
Video DataFlywheel: Resolving the Impossible Data Trinity in Video-Language Understanding
Wang, Xiao, Wu, Jianlong, Lin, Zijia, Zhang, Fuzheng, Zhang, Di, Nie, Liqiang
Recently, video-language understanding has achieved great success through large-scale pre-training. However, data scarcity remains a prevailing challenge. This study quantitatively reveals an "impossible trinity" among data quantity, diversity, and quality in pre-training datasets. Recent efforts seek to refine large-scale, diverse ASR datasets compromised by low quality through synthetic annotations. These methods successfully leverage useful information in multimodal video content (frames, tags, ASR transcripts, etc.) to refine the original annotations. Nevertheless, they struggle to mitigate noise within synthetic annotations and lack scalability as the dataset size expands. To address these issues, we introduce the Video DataFlywheel framework, which iteratively refines video annotations with improved noise control methods. For iterative refinement, we first leverage a video-language model to generate synthetic annotations, resulting in a refined dataset. Then, we pre-train on it and fine-tune on human refinement examples for a stronger model. These processes are repeated for continuous improvement. For noise control, we present AdaTaiLr, a novel noise control method that requires weaker assumptions on noise distribution, thereby proving more effective in large datasets with theoretical guarantees. The combination of iterative refinement and AdaTaiLr can achieve better scalability in video-language understanding. Extensive experiments show that our framework outperforms existing data refinement baselines, delivering a 3% performance boost and improving dataset quality with minimal diversity loss. Furthermore, our refined dataset facilitates significant improvements in various video-language understanding tasks, including video question answering and text-video retrieval.
Small Agent Can Also Rock! Empowering Small Language Models as Hallucination Detector
Cheng, Xiaoxue, Li, Junyi, Zhao, Wayne Xin, Zhang, Hongzhi, Zhang, Fuzheng, Zhang, Di, Gai, Kun, Wen, Ji-Rong
Hallucination detection is a challenging task for large language models (LLMs), and existing studies heavily rely on powerful closed-source LLMs such as GPT-4. In this paper, we propose an autonomous LLM-based agent framework, called HaluAgent, which enables relatively smaller LLMs (e.g. Baichuan2-Chat 7B) to actively select suitable tools for detecting multiple hallucination types such as text, code, and mathematical expression. In HaluAgent, we integrate the LLM, multi-functional toolbox, and design a fine-grained three-stage detection framework along with memory mechanism. To facilitate the effectiveness of HaluAgent, we leverage existing Chinese and English datasets to synthesize detection trajectories for fine-tuning, which endows HaluAgent with the capability for bilingual hallucination detection. Extensive experiments demonstrate that only using 2K samples for tuning LLMs, HaluAgent can perform hallucination detection on various types of tasks and datasets, achieving performance comparable to or even higher than GPT-4 without tool enhancements on both in-domain and out-of-domain datasets. We release our dataset and code at https://github.com/RUCAIBox/HaluAgent.
Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B
Zhang, Di, Huang, Xiaoshui, Zhou, Dongzhan, Li, Yuqiang, Ouyang, Wanli
This paper introduces the MCT Self-Refine (MCTSr) algorithm, an innovative integration of Large Language Models (LLMs) with Monte Carlo Tree Search (MCTS), designed to enhance performance in complex mathematical reasoning tasks. Addressing the challenges of accuracy and reliability in LLMs, particularly in strategic and mathematical reasoning, MCTSr leverages systematic exploration and heuristic self-refine mechanisms to improve decision-making frameworks within LLMs. The algorithm constructs a Monte Carlo search tree through iterative processes of Selection, self-refine, self-evaluation, and Backpropagation, utilizing an improved Upper Confidence Bound (UCB) formula to optimize the exploration-exploitation balance. Extensive experiments demonstrate MCTSr's efficacy in solving Olympiad-level mathematical problems, significantly improving success rates across multiple datasets, including GSM8K, GSM Hard, MATH, and Olympiad-level benchmarks, including Math Odyssey, AIME, and Olympiad-Bench. The study advances the application of LLMs in complex reasoning tasks and sets a foundation for future AI integration, enhancing decision-making accuracy and reliability in LLM-driven applications.