Goto

Collaborating Authors

 Zhang, Chengqi


What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning

arXiv.org Artificial Intelligence

In sequential decision-making problems involving sensitive attributes like race and gender, reinforcement learning (RL) agents must carefully consider long-term fairness while maximizing returns. Recent works have proposed many different types of fairness notions, but how unfairness arises in RL problems remains unclear. In this paper, we address this gap in the literature by investigating the sources of inequality through a causal lens. We first analyse the causal relationships governing the data generation process and decompose the effect of sensitive attributes on long-term well-being into distinct components. We then introduce a novel notion called dynamics fairness, which explicitly captures the inequality stemming from environmental dynamics, distinguishing it from those induced by decision-making or inherited from the past. This notion requires evaluating the expected changes in the next state and the reward induced by changing the value of the sensitive attribute while holding everything else constant. To quantitatively evaluate this counterfactual concept, we derive identification formulas that allow us to obtain reliable estimations from data. Extensive experiments demonstrate the effectiveness of the proposed techniques in explaining, detecting, and reducing inequality in reinforcement learning. We publicly release code at https://github.com/familyld/InsightFair.


Algorithmic Fairness: A Tolerance Perspective

arXiv.org Artificial Intelligence

Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems.


Transductive Reward Inference on Graph

arXiv.org Artificial Intelligence

In this study, we present a transductive inference approach on that reward information propagation graph, which enables the effective estimation of rewards for unlabelled data in offline reinforcement learning. Reward inference is the key to learning effective policies in practical scenarios, while direct environmental interactions are either too costly or unethical and the reward functions are rarely accessible, such as in healthcare and robotics. Our research focuses on developing a reward inference method based on the contextual properties of information propagation on graphs that capitalizes on a constrained number of human reward annotations to infer rewards for unlabelled data. We leverage both the available data and limited reward annotations to construct a reward propagation graph, wherein the edge weights incorporate various influential factors pertaining to the rewards. Subsequently, we employ the constructed graph for transductive reward inference, thereby estimating rewards for unlabelled data. Furthermore, we establish the existence of a fixed point during several iterations of the transductive inference process and demonstrate its at least convergence to a local optimum. Empirical evaluations on locomotion and robotic manipulation tasks validate the effectiveness of our approach. The application of our inferred rewards improves the performance in offline reinforcement learning tasks.


Foundation Models for Weather and Climate Data Understanding: A Comprehensive Survey

arXiv.org Artificial Intelligence

As artificial intelligence (AI) continues to rapidly evolve, the realm of Earth and atmospheric sciences is increasingly adopting data-driven models, powered by progressive developments in deep learning (DL). Specifically, DL techniques are extensively utilized to decode the chaotic and nonlinear aspects of Earth systems, and to address climate challenges via understanding weather and climate data. Cutting-edge performance on specific tasks within narrower spatio-temporal scales has been achieved recently through DL. The rise of large models, specifically large language models (LLMs), has enabled fine-tuning processes that yield remarkable outcomes across various downstream tasks, thereby propelling the advancement of general AI. However, we are still navigating the initial stages of crafting general AI for weather and climate. In this survey, we offer an exhaustive, timely overview of state-of-the-art AI methodologies specifically engineered for weather and climate data, with a special focus on time series and text data. Our primary coverage encompasses four critical aspects: types of weather and climate data, principal model architectures, model scopes and applications, and datasets for weather and climate. Furthermore, in relation to the creation and application of foundation models for weather and climate data understanding, we delve into the field's prevailing challenges, offer crucial insights, and propose detailed avenues for future research. This comprehensive approach equips practitioners with the requisite knowledge to make substantial progress in this domain. Our survey encapsulates the most recent breakthroughs in research on large, data-driven models for weather and climate data understanding, emphasizing robust foundations, current advancements, practical applications, crucial resources, and prospective research opportunities.


Causal Reinforcement Learning: A Survey

arXiv.org Artificial Intelligence

Reinforcement learning is an essential paradigm for solving sequential decision problems under uncertainty. Despite many remarkable achievements in recent decades, applying reinforcement learning methods in the real world remains challenging. One of the main obstacles is that reinforcement learning agents lack a fundamental understanding of the world and must therefore learn from scratch through numerous trial-and-error interactions. They may also face challenges in providing explanations for their decisions and generalizing the acquired knowledge. Causality, however, offers a notable advantage as it can formalize knowledge in a systematic manner and leverage invariance for effective knowledge transfer. This has led to the emergence of causal reinforcement learning, a subfield of reinforcement learning that seeks to enhance existing algorithms by incorporating causal relationships into the learning process. In this survey, we comprehensively review the literature on causal reinforcement learning. We first introduce the basic concepts of causality and reinforcement learning, and then explain how causality can address core challenges in non-causal reinforcement learning. We categorize and systematically review existing causal reinforcement learning approaches based on their target problems and methodologies. Finally, we outline open issues and future directions in this emerging field.


Improving the Robustness of Summarization Systems with Dual Augmentation

arXiv.org Artificial Intelligence

A robust summarization system should be able to capture the gist of the document, regardless of the specific word choices or noise in the input. In this work, we first explore the summarization models' robustness against perturbations including word-level synonym substitution and noise. To create semantic-consistent substitutes, we propose a SummAttacker, which is an efficient approach to generating adversarial samples based on language models. Experimental results show that state-of-the-art summarization models have a significant decrease in performance on adversarial and noisy test sets. Next, we analyze the vulnerability of the summarization systems and explore improving the robustness by data augmentation. Specifically, the first brittleness factor we found is the poor understanding of infrequent words in the input. Correspondingly, we feed the encoder with more diverse cases created by SummAttacker in the input space. The other factor is in the latent space, where the attacked inputs bring more variations to the hidden states. Hence, we construct adversarial decoder input and devise manifold softmixing operation in hidden space to introduce more diversity. Experimental results on Gigaword and CNN/DM datasets demonstrate that our approach achieves significant improvements over strong baselines and exhibits higher robustness on noisy, attacked, and clean datasets.


Dual Personalization on Federated Recommendation

arXiv.org Artificial Intelligence

Federated recommendation is a new Internet service architecture that aims to provide privacy-preserving recommendation services in federated settings. Existing solutions are used to combine distributed recommendation algorithms and privacy-preserving mechanisms. Thus it inherently takes the form of heavyweight models at the server and hinders the deployment of on-device intelligent models to end-users. This paper proposes a novel Personalized Federated Recommendation (PFedRec) framework to learn many user-specific lightweight models to be deployed on smart devices rather than a heavyweight model on a server. Moreover, we propose a new dual personalization mechanism to effectively learn fine-grained personalization on both users and items. The overall learning process is formulated into a unified federated optimization framework. Specifically, unlike previous methods that share exactly the same item embeddings across users in a federated system, dual personalization allows mild finetuning of item embeddings for each user to generate user-specific views for item representations which can be integrated into existing federated recommendation methods to gain improvements immediately. Experiments on multiple benchmark datasets have demonstrated the effectiveness of PFedRec and the dual personalization mechanism. Moreover, we provide visualizations and in-depth analysis of the personalization techniques in item embedding, which shed novel insights on the design of recommender systems in federated settings. The code is available.


Does Continual Learning Equally Forget All Parameters?

arXiv.org Artificial Intelligence

Distribution shift (e.g., task or domain shift) in continual learning (CL) usually results in catastrophic forgetting of neural networks. Although it can be alleviated by repeatedly replaying buffered data, the every-step replay is time-consuming. In this paper, we study which modules in neural networks are more prone to forgetting by investigating their training dynamics during CL. Our proposed metrics show that only a few modules are more task-specific and sensitively alter between tasks, while others can be shared across tasks as common knowledge. Hence, we attribute forgetting mainly to the former and find that finetuning them only on a small buffer at the end of any CL method can bring non-trivial improvement. Due to the small number of finetuned parameters, such ``Forgetting Prioritized Finetuning (FPF)'' is efficient in computation. We further propose a more efficient and simpler method that entirely removes the every-step replay and replaces them by only $k$-times of FPF periodically triggered during CL. Surprisingly, this ``$k$-FPF'' performs comparably to FPF and outperforms the SOTA CL methods but significantly reduces their computational overhead and cost. In experiments on several benchmarks of class- and domain-incremental CL, FPF consistently improves existing CL methods by a large margin, and $k$-FPF further excels in efficiency without degrading the accuracy. We also empirically studied the impact of buffer size, epochs per task, and finetuning modules on the cost and accuracy of our methods.


Multi-Center Federated Learning: Clients Clustering for Better Personalization

arXiv.org Artificial Intelligence

Personalized decision-making can be implemented in a Federated learning (FL) framework that can collaboratively train a decision model by extracting knowledge across intelligent clients, e.g. smartphones or enterprises. FL can mitigate the data privacy risk of collaborative training since it merely collects local gradients from users without access to their data. However, FL is fragile in the presence of statistical heterogeneity that is commonly encountered in personalized decision-making, e.g., non-IID data over different clients. Existing FL approaches usually update a single global model to capture the shared knowledge of all users by aggregating their gradients, regardless of the discrepancy between their data distributions. By comparison, a mixture of multiple global models could capture the heterogeneity across various clients if assigning the client to different global models (i.e., centers) in FL. To this end, we propose a novel multi-center aggregation mechanism to cluster clients using their models' parameters. It learns multiple global models from data as the cluster centers, and simultaneously derives the optimal matching between users and centers. We then formulate it as an optimization problem that can be efficiently solved by a stochastic expectation maximization (EM) algorithm. Experiments on multiple benchmark datasets of FL show that our method outperforms several popular baseline methods. The experimental source codes are publicly available on the Github repository https://github.com/mingxuts/multi-center-fed-learning .


Voting from Nearest Tasks: Meta-Vote Pruning of Pre-trained Models for Downstream Tasks

arXiv.org Artificial Intelligence

As a few large-scale pre-trained models become the major choices of various applications, new challenges arise for model pruning, e.g., can we avoid pruning the same model from scratch for every downstream task? How to reuse the pruning results of previous tasks to accelerate the pruning for a new task? To address these challenges, we create a small model for a new task from the pruned models of similar tasks. We show that a few fine-tuning steps on this model suffice to produce a promising pruned-model for the new task. We study this ''meta-pruning'' from nearest tasks on two major classes of pre-trained models, convolutional neural network (CNN) and vision transformer (ViT), under a limited budget of pruning iterations. Our study begins by investigating the overlap of pruned models for similar tasks and how the overlap changes over different layers and blocks. Inspired by these discoveries, we develop a simple but effective ''Meta-Vote Pruning (MVP)'' method that significantly reduces the pruning iterations for a new task by initializing a sub-network from the pruned models of its nearest tasks. In experiments, we demonstrate MVP's advantages in accuracy, efficiency, and generalization through extensive empirical studies and comparisons with popular pruning methods over several datasets.