Goto

Collaborating Authors

 Zhang, Cheng


Kleene algebra with commutativity conditions is undecidable

arXiv.org Artificial Intelligence

We prove that the equational theory of Kleene algebra with commutativity conditions on primitives (or atomic terms) is undecidable, thereby settling a longstanding open question in the theory of Kleene algebra. While this question has also been recently solved independently by Kuznetsov, our results hold even for weaker theories that do not support the induction axioms of Kleene algebra.


SPAC-Net: Rethinking Point Cloud Completion with Structural Prior

arXiv.org Artificial Intelligence

Point cloud completion aims to infer a complete shape from its partial observation. Many approaches utilize a pure encoderdecoder paradigm in which complete shape can be directly predicted by shape priors learned from partial scans, however, these methods suffer from the loss of details inevitably due to the feature abstraction issues. In this paper, we propose a novel framework,termed SPAC-Net, that aims to rethink the completion task under the guidance of a new structural prior, we call it interface. Specifically, our method first investigates Marginal Detector (MAD) module to localize the interface, defined as the intersection between the known observation and the missing parts. Based on the interface, our method predicts the coarse shape by learning the displacement from the points in interface move to their corresponding position in missing parts. Furthermore, we devise an additional Structure Supplement(SSP) module before the upsampling stage to enhance the structural details of the coarse shape, enabling the upsampling module to focus more on the upsampling task. Extensive experiments have been conducted on several challenging benchmarks, and the results demonstrate that our method outperforms existing state-of-the-art approaches.


Visual Data Diagnosis and Debiasing with Concept Graphs

arXiv.org Artificial Intelligence

The widespread success of deep learning models today is owed to the curation of extensive datasets significant in size and complexity. However, such models frequently pick up inherent biases in the data during the training process, leading to unreliable predictions. Diagnosing and debiasing datasets is thus a necessity to ensure reliable model performance. In this paper, we present ConBias, a novel framework for diagnosing and mitigating Concept co-occurrence Biases in visual datasets. ConBias represents visual datasets as knowledge graphs of concepts, enabling meticulous analysis of spurious concept co-occurrences to uncover concept imbalances across the whole dataset. Moreover, we show that by employing a novel clique-based concept balancing strategy, we can mitigate these imbalances, leading to enhanced performance on downstream tasks. Extensive experiments show that data augmentation based on a balanced concept distribution augmented by Conbias improves generalization performance across multiple datasets compared to state-of-the-art methods.


Hardware and Software Platform Inference

arXiv.org Artificial Intelligence

It is now a common business practice to buy access to large language model (LLM) inference rather than self-host, because of significant upfront hardware infrastructure and energy costs. However, as a buyer, there is no mechanism to verify the authenticity of the advertised service including the serving hardware platform, e.g. that it is actually being served using an NVIDIA H100. Furthermore, there are reports suggesting that model providers may deliver models that differ slightly from the advertised ones, often to make them run on less expensive hardware. That way, a client pays premium for a capable model access on more expensive hardware, yet ends up being served by a (potentially less capable) cheaper model on cheaper hardware. In this paper we introduce \textit{\textbf{hardware and software platform inference (HSPI)}} -- a method for identifying the underlying \GPU{} architecture and software stack of a (black-box) machine learning model solely based on its input-output behavior. Our method leverages the inherent differences of various \GPU{} architectures and compilers to distinguish between different \GPU{} types and software stacks. By analyzing the numerical patterns in the model's outputs, we propose a classification framework capable of accurately identifying the \GPU{} used for model inference as well as the underlying software configuration. Our findings demonstrate the feasibility of inferring \GPU{} type from black-box models. We evaluate HSPI against models served on different real hardware and find that in a white-box setting we can distinguish between different \GPU{}s with between $83.9\%$ and $100\%$ accuracy. Even in a black-box setting we are able to achieve results that are up to three times higher than random guess accuracy.


Functional Gradient Flows for Constrained Sampling

arXiv.org Machine Learning

Recently, through a unified gradient flow perspective of Markov chain Monte Carlo (MCMC) and variational inference (VI), particle-based variational inference methods (ParVIs) have been proposed that tend to combine the best of both worlds. While typical ParVIs such as Stein Variational Gradient Descent (SVGD) approximate the gradient flow within a reproducing kernel Hilbert space (RKHS), many attempts have been made recently to replace RKHS with more expressive function spaces, such as neural networks. While successful, these methods are mainly designed for sampling from unconstrained domains. In this paper, we offer a general solution to constrained sampling by introducing a boundary condition for the gradient flow which would confine the particles within the specific domain. This allows us to propose a new functional gradient ParVI method for constrained sampling, called constrained functional gradient flow (CFG), with provable continuous-time convergence in total variation (TV). We also present novel numerical strategies to handle the boundary integral term arising from the domain constraints. Our theory and experiments demonstrate the effectiveness of the proposed framework.


Over-the-Air Federated Learning in Cell-Free MIMO with Long-term Power Constraint

arXiv.org Artificial Intelligence

Wireless networks supporting artificial intelligence have gained significant attention, with Over-the-Air Federated Learning emerging as a key application due to its unique transmission and distributed computing characteristics. This paper derives error bounds for Over-the-Air Federated Learning in a Cell-free MIMO system and formulates an optimization problem to minimize optimality gap via joint optimization of power control and beamforming. We introduce the MOP-LOFPC algorithm, which employs Lyapunov optimization to decouple long-term constraints across rounds while requiring only causal channel state information. Experimental results demonstrate that MOP-LOFPC achieves a better and more flexible trade-off between the model's training loss and adherence to long-term power constraints compared to existing baselines.


Semi-Implicit Functional Gradient Flow

arXiv.org Machine Learning

Particle-based variational inference methods (ParVIs) use non-parametric variational families represented by particles to approximate the target distribution according to the kernelized Wasserstein gradient flow for the Kullback-Leibler (KL) divergence. Recent works introduce functional gradient flows to substitute the kernel for better flexibility. However, the deterministic updating mechanism may suffer from limited exploration and require expensive repetitive runs for new samples. In this paper, we propose Semi-Implicit Functional Gradient flow (SIFG), a functional gradient ParVI method that uses perturbed particles as the approximation family. The corresponding functional gradient flow, which can be estimated via denoising score matching, exhibits strong theoretical convergence guarantee. We also present an adaptive version of our method to automatically choose the suitable noise magnitude. Extensive experiments demonstrate the effectiveness and efficiency of the proposed framework on both simulated and real data problems.


Diffusion-PINN Sampler

arXiv.org Machine Learning

Recent success of diffusion models has inspired a surge of interest in developing sampling techniques using reverse diffusion processes. However, accurately estimating the drift term in the reverse stochastic differential equation (SDE) solely from the unnormalized target density poses significant challenges, hindering existing methods from achieving state-of-the-art performance. In this paper, we introduce the Diffusion-PINN Sampler (DPS), a novel diffusion-based sampling algorithm that estimates the drift term by solving the governing partial differential equation of the log-density of the underlying SDE marginals via physics-informed neural networks (PINN). We prove that the error of log-density approximation can be controlled by the PINN residual loss, enabling us to establish convergence guarantees of DPS. Experiments on a variety of sampling tasks demonstrate the effectiveness of our approach, particularly in accurately identifying mixing proportions when the target contains isolated components.


Scaling Laws for Mixed quantization in Large Language Models

arXiv.org Artificial Intelligence

Post-training quantization of Large Language Models (LLMs) has proven effective in reducing the computational requirements for running inference on these models. In this study, we focus on a straightforward question: When aiming for a specific accuracy or perplexity target for low-precision quantization, how many high-precision numbers or calculations are required to preserve as we scale LLMs to larger sizes? We first introduce a critical metric named the quantization ratio, which compares the number of parameters quantized to low-precision arithmetic against the total parameter count. Through extensive and carefully controlled experiments across different model families, arithmetic types, and quantization granularities (e.g. We believe these observed phenomena offer valuable insights for future AI hardware design and the development of advanced Efficient AI algorithms. Large Language Models (LLMs) have demonstrated remarkable performance across a range of natural language processing (NLP) tasks (Brown et al., 2020), and state-of-the-art models have ranged from 1.6B parameters (Radford et al. (2019)) to 1T parameters (Fedus et al. (2022)) in recent years. Recent work has driven the development of even larger models given findings that LLMs exhibit emergent capabilities at increased parameter counts (Wei et al., 2022a). As such, researchers have endeavoured to understand the scaling laws of LLMs by characterising how the required number of training tokens scales with parameter count to train compute-optimal models under a fixed compute budget (Kaplan et al. (2020), Hoffmann et al. (2022)).


Zero-Shot Learning of Causal Models

arXiv.org Machine Learning

With the increasing acquisition of datasets over time, we now have access to precise and varied descriptions of the world, capturing all sorts of phenomena. These datasets can be seen as empirical observations of unknown causal generative processes, which can commonly be described by Structural Causal Models (SCMs). Recovering these causal generative processes from observations poses formidable challenges, and often require to learn a specific generative model for each dataset. In this work, we propose to learn a \emph{single} model capable of inferring in a zero-shot manner the causal generative processes of datasets. Rather than learning a specific SCM for each dataset, we enable the Fixed-Point Approach (FiP) proposed in~\cite{scetbon2024fip}, to infer the generative SCMs conditionally on their empirical representations. More specifically, we propose to amortize the learning of a conditional version of FiP to infer generative SCMs from observations and causal structures on synthetically generated datasets. We show that our model is capable of predicting in zero-shot the true generative SCMs, and as a by-product, of (i) generating new dataset samples, and (ii) inferring intervened ones. Our experiments demonstrate that our amortized procedure achieves performances on par with SoTA methods trained specifically for each dataset on both in and out-of-distribution problems. To the best of our knowledge, this is the first time that SCMs are inferred in a zero-shot manner from observations, paving the way for a paradigmatic shift towards the assimilation of causal knowledge across datasets.