Goto

Collaborating Authors

 Yurtsever, Alp


Practical sketching algorithms for low-rank matrix approximation

arXiv.org Machine Learning

This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.


Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data

Neural Information Processing Systems

Several important applications, such as streaming PCA and semidefinite programming, involve a large-scale positive-semidefinite (psd) matrix that is presented as a sequence of linear updates. Because of storage limitations, it may only be possible to retain a sketch of the psd matrix. This paper develops a new algorithm for fixed-rank psd approximation from a sketch. The approach combines the Nystrรถm approximation with a novel mechanism for rank truncation. Theoretical analysis establishes that the proposed method can achieve any prescribed relative error in the Schatten 1-norm and that it exploits the spectral decay of the input matrix. Computer experiments show that the proposed method dominates alternative techniques for fixed-rank psd matrix approximation across a wide range of examples.


Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data

arXiv.org Machine Learning

Several important applications, such as streaming PCA and semidefinite programming, involve a large-scale positive-semidefinite (psd) matrix that is presented as a sequence of linear updates. Because of storage limitations, it may only be possible to retain a sketch of the psd matrix. This paper develops a new algorithm for fixed-rank psd approximation from a sketch. The approach combines the Nystrom approximation with a novel mechanism for rank truncation. Theoretical analysis establishes that the proposed method can achieve any prescribed relative error in the Schatten 1-norm and that it exploits the spectral decay of the input matrix. Computer experiments show that the proposed method dominates alternative techniques for fixed-rank psd matrix approximation across a wide range of examples.


Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage

arXiv.org Machine Learning

This paper concerns a fundamental class of convex matrix optimization problems. It presents the first algorithm that uses optimal storage and provably computes a low-rank approximation of a solution. In particular, when all solutions have low rank, the algorithm converges to a solution. This algorithm, SketchyCGM, modifies a standard convex optimization scheme, the conditional gradient method, to store only a small randomized sketch of the matrix variable. After the optimization terminates, the algorithm extracts a low-rank approximation of the solution from the sketch. In contrast to nonconvex heuristics, the guarantees for SketchyCGM do not rely on statistical models for the problem data. Numerical work demonstrates the benefits of SketchyCGM over heuristics.


Stochastic Three-Composite Convex Minimization

Neural Information Processing Systems

We propose a stochastic optimization method for the minimization of the sum of three convex functions, one of which has Lipschitz continuous gradient as well as restricted strong convexity. Our approach is most suitable in the setting where it is computationally advantageous to process smooth term in the decomposition with its stochastic gradient estimate and the other two functions separately with their proximal operators, such as doubly regularized empirical risk minimization problems. We prove the convergence characterization of the proposed algorithm in expectation under the standard assumptions for the stochastic gradient estimate of the smooth term. Our method operates in the primal space and can be considered as a stochastic extension of the three-operator splitting method. Finally, numerical evidence supports the effectiveness of our method in real-world problems.


A Universal Primal-Dual Convex Optimization Framework

Neural Information Processing Systems

We propose a new primal-dual algorithmic framework for a prototypical constrained convex optimization template. The algorithmic instances of our framework are universal since they can automatically adapt to the unknown Holder continuity degree and constant within the dual formulation. They are also guaranteed to have optimal convergence rates in the objective residual and the feasibility gap for each Holder smoothness degree. In contrast to existing primal-dual algorithms, our framework avoids the proximity operator of the objective function. We instead leverage computationally cheaper, Fenchel-type operators, which are the main workhorses of the generalized conditional gradient (GCG)-type methods. In contrast to the GCG-type methods, our framework does not require the objective function to be differentiable, and can also process additional general linear inclusion constraints, while guarantees the convergence rate on the primal problem.