Well File:

 Young Hun Jung



Online Learning via the Differential Privacy Lens

Neural Information Processing Systems

In this paper, we use differential privacy as a lens to examine online learning in both full and partial information settings. The differential privacy framework is, at heart, less about privacy and more about algorithmic stability, and thus has found application in domains well beyond those where information security is central. Here we develop an algorithmic property called one-step differential stability which facilitates a more refined regret analysis for online learning methods. We show that tools from the differential privacy literature can yield regret bounds for many interesting online learning problems including online convex optimization and online linear optimization. Our stability notion is particularly well-suited for deriving first-order regret bounds for follow-the-perturbed-leader algorithms, something that all previous analyses have struggled to achieve. We also generalize the standard max-divergence to obtain a broader class called Tsallis max-divergences. These define stronger notions of stability that are useful in deriving bounds in partial information settings such as multi-armed bandits and bandits with experts.



Online Learning via the Differential Privacy Lens

Neural Information Processing Systems

In this paper, we use differential privacy as a lens to examine online learning in both full and partial information settings. The differential privacy framework is, at heart, less about privacy and more about algorithmic stability, and thus has found application in domains well beyond those where information security is central. Here we develop an algorithmic property called one-step differential stability which facilitates a more refined regret analysis for online learning methods. We show that tools from the differential privacy literature can yield regret bounds for many interesting online learning problems including online convex optimization and online linear optimization. Our stability notion is particularly well-suited for deriving first-order regret bounds for follow-the-perturbed-leader algorithms, something that all previous analyses have struggled to achieve. We also generalize the standard max-divergence to obtain a broader class called Tsallis max-divergences. These define stronger notions of stability that are useful in deriving bounds in partial information settings such as multi-armed bandits and bandits with experts.


Regret Bounds for Thompson Sampling in Episodic Restless Bandit Problems

Neural Information Processing Systems

Restless bandit problems are instances of non-stationary multi-armed bandits. These problems have been studied well from the optimization perspective, where the goal is to efficiently find a near-optimal policy when system parameters are known. However, very few papers adopt a learning perspective, where the parameters are unknown. In this paper, we analyze the performance of Thompson sampling in episodic restless bandits with unknown parameters. We consider a general policy map to define our competitor and prove an Õ( T) Bayesian regret bound. Our competitor is flexible enough to represent various benchmarks including the best fixed action policy, the optimal policy, the Whittle index policy, or the myopic policy.


Online multiclass boosting

Neural Information Processing Systems

Recent work has extended the theoretical analysis of boosting algorithms to multiclass problems and to online settings. However, the multiclass extension is in the batch setting and the online extensions only consider binary classification. We fill this gap in the literature by defining, and justifying, a weak learning condition for online multiclass boosting. This condition leads to an optimal boosting algorithm that requires the minimal number of weak learners to achieve a certain accuracy. Additionally, we propose an adaptive algorithm which is near optimal and enjoys an excellent performance on real data due to its adaptive property.