You, Chenyu
Contextualized Attention-based Knowledge Transfer for Spoken Conversational Question Answering
You, Chenyu, Chen, Nuo, Zou, Yuexian
Spoken conversational question answering (SCQA) requires machines to model complex dialogue flow given the speech utterances and text corpora. Different from traditional text question answering (QA) tasks, SCQA involves audio signal processing, passage comprehension, and contextual understanding. However, ASR systems introduce unexpected noisy signals to the transcriptions, which result in performance degradation on SCQA. To overcome the problem, we propose CADNet, a novel contextualized attention-based distillation approach, which applies both cross-attention and self-attention to obtain ASR-robust contextualized embedding representations of the passage and dialogue history for performance improvements. We also introduce the spoken conventional knowledge distillation framework to distill the ASR-robust knowledge from the estimated probabilities of the teacher model to the student. We conduct extensive experiments on the Spoken-CoQA dataset and demonstrate that our approach achieves remarkable performance in this task.
Knowledge Distillation for Improved Accuracy in Spoken Question Answering
You, Chenyu, Chen, Nuo, Zou, Yuexian
Spoken question answering (SQA) is a challenging task that requires the machine to fully understand the complex spoken documents. Automatic speech recognition (ASR) plays a significant role in the development of QA systems. However, the recent work shows that ASR systems generate highly noisy transcripts, which critically limit the capability of machine comprehension on the SQA task. To address the issue, we present a novel distillation framework. Specifically, we devise a training strategy to perform knowledge distillation (KD) from spoken documents and written counterparts. Our work makes a step towards distilling knowledge from the language model as a supervision signal to lead to better student accuracy by reducing the misalignment between automatic and manual transcriptions. Experiments demonstrate that our approach outperforms several state-of-the-art language models on the Spoken-SQuAD dataset.
Towards Data Distillation for End-to-end Spoken Conversational Question Answering
You, Chenyu, Chen, Nuo, Liu, Fenglin, Yang, Dongchao, Zou, Yuexian
In spoken question answering, QA systems are designed to answer questions from contiguous text spans within the related speech transcripts. However, the most natural way that human seek or test their knowledge is via human conversations. Therefore, we propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling QA systems to model complex dialogues flow given the speech utterances and text corpora. In this task, our main objective is to build a QA system to deal with conversational questions both in spoken and text forms, and to explore the plausibility of providing more cues in spoken documents with systems in information gathering. To this end, instead of adopting automatically generated speech transcripts with highly noisy data, we propose a novel unified data distillation approach, DDNet, which directly fuse audio-text features to reduce the misalignment between automatic speech recognition hypotheses and the reference transcriptions. In addition, to evaluate the capacity of QA systems in a dialogue-style interaction, we assemble a Spoken Conversational Question Answering (Spoken-CoQA) dataset with more than 120k question-answer pairs. Experiments demonstrate that our proposed method achieves superior performance in spoken conversational question answering.
CT Super-resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble(GAN-CIRCLE)
You, Chenyu, Zhang, Yi, Zhang, Xiaoliu, Li, Guang, Ju, Shenghong, Zhao, Zhen, Zhang, Zhuiyang, Cong, Wenxiang, Saha, Punam K., Wang, Ge
Computed tomography (CT) is a popular medical imaging modality for screening, diagnosis, and image-guided therapy. However, CT has its limitations, especially involved ionizing radiation dose. Practically, it is highly desirable to have ultrahigh quality CT imaging for fine structural details at a minimized radiation dosage. In this paper, we propose a semi-supervised deep learning approach to recover high-resolution (HR) CT images from low-resolution (LR) counterparts. Especially, with the generative adversarial network (GAN) as the basic component, we enforce the cycle-consistency in terms of the Wasserstein distance to establish a nonlinear end-to-end mapping from noisy LR input images to denoised HR outputs. In this deep imaging process, we incorporate deep convolutional neural network (CNNs), residual learning, and network in network techniques for feature extraction and restoration. In contrast to the current trend of increasing network depth and complexity to boost the CT imaging performance, which limit its real-world applications by imposing considerable computational and memory overheads, we apply a parallel 1x1 CNN to reduce the dimensionality of the output of the hidden layer. Furthermore, we optimize the number of layers and the number of filters for each CNN layer. Quantitative and qualitative evaluations demonstrate that our proposed model is accurate, efficient and robust for SR image restoration from noisy LR input images. In particular, we validate our composite SR networks on two large-scale CT datasets, and obtain very encouraging results as compared to the other state-of-the-art methods.
Structure-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising
You, Chenyu, Yang, Qingsong, Shan, Hongming, Gjesteby, Lars, Li, Guang, Ju, Shenghong, Zhang, Zhuiyang, Zhao, Zhen, Zhang, Yi, Cong, Wenxiang, Wang, Ge
Computed tomography (CT) is a popular medical imaging modality in clinical applications. At the same time, the x-ray radiation dose associated with CT scans raises public concerns due to its potential risks to the patients. Over the past years, major efforts have been dedicated to the development of Low-Dose CT (LDCT) methods. However, the radiation dose reduction compromises the signal-to-noise ratio (SNR), leading to strong noise and artifacts that down-grade CT image quality. In this paper, we propose a novel 3D noise reduction method, called Structure-sensitive Multi-scale Generative Adversarial Net (SMGAN), to improve the LDCT image quality. Specifically, we incorporate three-dimensional (3D) volumetric information to improve the image quality. Also, different loss functions for training denoising models are investigated. Experiments show that the proposed method can effectively preserve structural and texture information from normal-dose CT (NDCT) images, and significantly suppress noise and artifacts. Qualitative visual assessments by three experienced radiologists demonstrate that the proposed method retrieves more detailed information, and outperforms competing methods.