Goto

Collaborating Authors

 You, Chenyu


Generating Accurate and Faithful Discharge Instructions: Task, Dataset, and Model

arXiv.org Artificial Intelligence

The "Patient Instruction" (PI), known as "Discharge Instruction", which contains critical instructional information provided both to carers and to the patient at the time of discharge, is essential for the patient to manage their condition outside hospital. An accurate and easy-to-follow PI can improve the self-management of patients which can in turn reduce hospital readmission rates. However, writing an appropriate PI can be extremely time-consuming for physicians, and is subject to being incomplete or error-prone for (potentially overworked) physicians. Therefore, we propose a new task that can provide an objective means of avoiding incompleteness, while reducing clinical workload: the automatic generation of the PI, which is imagined as being a document that the clinician can review, modify, and approve as necessary (rather than taking the human "out of the loop"). We build a benchmark clinical dataset and propose the Re3Writer, which imitates the working patterns of physicians to first retrieve related working experience from historical PIs written by physicians, then reason related medical knowledge. Finally, it refines the retrieved working experience and reasoned medical knowledge to extract useful information, which is used to generate the PI for previously-unseen patient according to their health records during hospitalization. Our experiments show that, using our method, the performance of five different models can be substantially boosted across all metrics, with up to 20%, 11%, and 19% relative improvements in BLEU-4, ROUGE-L, and METEOR, respectively. Meanwhile, we show results from human evaluations to measure the effectiveness in terms of its usefulness for clinical practice. The code is available at https://github.com/AI-in-Hospitals/Patient-Instructions


Aligning Source Visual and Target Language Domains for Unpaired Video Captioning

arXiv.org Artificial Intelligence

Training supervised video captioning model requires coupled video-caption pairs. However, for many targeted languages, sufficient paired data are not available. To this end, we introduce the unpaired video captioning task aiming to train models without coupled video-caption pairs in target language. To solve the task, a natural choice is to employ a two-step pipeline system: first utilizing video-to-pivot captioning model to generate captions in pivot language and then utilizing pivot-to-target translation model to translate the pivot captions to the target language. However, in such a pipeline system, 1) visual information cannot reach the translation model, generating visual irrelevant target captions; 2) the errors in the generated pivot captions will be propagated to the translation model, resulting in disfluent target captions. To address these problems, we propose the Unpaired Video Captioning with Visual Injection system (UVC-VI). UVC-VI first introduces the Visual Injection Module (VIM), which aligns source visual and target language domains to inject the source visual information into the target language domain. Meanwhile, VIM directly connects the encoder of the video-to-pivot model and the decoder of the pivot-to-target model, allowing end-to-end inference by completely skipping the generation of pivot captions. To enhance the cross-modality injection of the VIM, UVC-VI further introduces a pluggable video encoder, i.e., Multimodal Collaborative Encoder (MCE). The experiments show that UVC-VI outperforms pipeline systems and exceeds several supervised systems. Furthermore, equipping existing supervised systems with our MCE can achieve 4% and 7% relative margins on the CIDEr scores to current state-of-the-art models on the benchmark MSVD and MSR-VTT datasets, respectively.


Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation

arXiv.org Artificial Intelligence

Many medical datasets have recently been created for medical image segmentation tasks, and it is natural to question whether we can use them to sequentially train a single model that (1) performs better on all these datasets, and (2) generalizes well and transfers better to the unknown target site domain. Prior works have achieved this goal by jointly training one model on multi-site datasets, which achieve competitive performance on average but such methods rely on the assumption about the availability of all training data, thus limiting its effectiveness in practical deployment. In this paper, we propose a novel multi-site segmentation framework called incremental-transfer learning (ITL), which learns a model from multi-site datasets in an end-to-end sequential fashion. Specifically, "incremental" refers to training sequentially constructed datasets, and "transfer" is achieved by leveraging useful information from the linear combination of embedding features on each dataset. In addition, we introduce our ITL framework, where we train the network including a site-agnostic encoder with pre-trained weights and at most two segmentation decoder heads. We also design a novel site-level incremental loss in order to generalize well on the target domain. Second, we show for the first time that leveraging our ITL training scheme is able to alleviate challenging catastrophic forgetting problems in incremental learning. We conduct experiments using five challenging benchmark datasets to validate the effectiveness of our incremental-transfer learning approach. Our approach makes minimal assumptions on computation resources and domain-specific expertise, and hence constitutes a strong starting point in multi-site medical image segmentation.


Class-Aware Generative Adversarial Transformers for Medical Image Segmentation

arXiv.org Artificial Intelligence

Transformers have made remarkable progress towards modeling long-range dependencies within the medical image analysis domain. However, current transformer-based models suffer from several disadvantages: (1) existing methods fail to capture the important features of the images due to the naive tokenization scheme; (2) the models suffer from information loss because they only consider single-scale feature representations; and (3) the segmentation label maps generated by the models are not accurate enough without considering rich semantic contexts and anatomical textures. In this work, we present CA-GANformer, a novel type of generative adversarial transformers, for medical image segmentation. First, we take advantage of the pyramid structure to construct multi-scale representations and handle multi-scale variations. We then design a novel class-aware transformer module to better learn the discriminative regions of objects with semantic structures. Lastly, we utilize an adversarial training strategy that boosts segmentation accuracy and correspondingly allows a transformer-based discriminator to capture high-level semantically correlated contents and low-level anatomical features. Our experiments demonstrate that CA-GANformer dramatically outperforms previous state-of-the-art transformer-based approaches on three benchmarks, obtaining 2.54%-5.88% absolute improvements in Dice over previous models. Further qualitative experiments provide a more detailed picture of the model's inner workings, shed light on the challenges in improved transparency, and demonstrate that transfer learning can greatly improve performance and reduce the size of medical image datasets in training, making CA-GANformer a strong starting point for downstream medical image analysis tasks. Codes and models will be available to the public.


KerGNNs: Interpretable Graph Neural Networks with Graph Kernels

arXiv.org Artificial Intelligence

Graph kernels are historically the most widely-used technique for graph classification tasks. However, these methods suffer from limited performance because of the hand-crafted combinatorial features of graphs. In recent years, graph neural networks (GNNs) have become the state-of-the-art method in downstream graph-related tasks due to their superior performance. Most GNNs are based on Message Passing Neural Network (MPNN) frameworks. However, recent studies show that MPNNs can not exceed the power of the Weisfeiler-Lehman (WL) algorithm in graph isomorphism test. To address the limitations of existing graph kernel and GNN methods, in this paper, we propose a novel GNN framework, termed \textit{Kernel Graph Neural Networks} (KerGNNs), which integrates graph kernels into the message passing process of GNNs. Inspired by convolution filters in convolutional neural networks (CNNs), KerGNNs adopt trainable hidden graphs as graph filters which are combined with subgraphs to update node embeddings using graph kernels. In addition, we show that MPNNs can be viewed as special cases of KerGNNs. We apply KerGNNs to multiple graph-related tasks and use cross-validation to make fair comparisons with benchmarks. We show that our method achieves competitive performance compared with existing state-of-the-art methods, demonstrating the potential to increase the representation ability of GNNs. We also show that the trained graph filters in KerGNNs can reveal the local graph structures of the dataset, which significantly improves the model interpretability compared with conventional GNN models.


Auto-Encoding Knowledge Graph for Unsupervised Medical Report Generation

arXiv.org Artificial Intelligence

Medical report generation, which aims to automatically generate a long and coherent report of a given medical image, has been receiving growing research interests. Existing approaches mainly adopt a supervised manner and heavily rely on coupled image-report pairs. However, in the medical domain, building a large-scale image-report paired dataset is both time-consuming and expensive. To relax the dependency on paired data, we propose an unsupervised model Knowledge Graph Auto-Encoder (KGAE) which accepts independent sets of images and reports in training. KGAE consists of a pre-constructed knowledge graph, a knowledge-driven encoder and a knowledge-driven decoder. The knowledge graph works as the shared latent space to bridge the visual and textual domains; The knowledge-driven encoder projects medical images and reports to the corresponding coordinates in this latent space and the knowledge-driven decoder generates a medical report given a coordinate in this space. Since the knowledge-driven encoder and decoder can be trained with independent sets of images and reports, KGAE is unsupervised. The experiments show that the unsupervised KGAE generates desirable medical reports without using any image-report training pairs. Moreover, KGAE can also work in both semi-supervised and supervised settings, and accept paired images and reports in training. By further fine-tuning with image-report pairs, KGAE consistently outperforms the current state-of-the-art models on two datasets.


Self-supervised Contrastive Cross-Modality Representation Learning for Spoken Question Answering

arXiv.org Artificial Intelligence

Spoken question answering (SQA) requires fine-grained understanding of both spoken documents and questions for the optimal answer prediction. In this paper, we propose novel training schemes for spoken question answering with a self-supervised training stage and a contrastive representation learning stage. In the self-supervised stage, we propose three auxiliary self-supervised tasks, including utterance restoration, utterance insertion, and question discrimination, and jointly train the model to capture consistency and coherence among speech documents without any additional data or annotations. We then propose to learn noise-invariant utterance representations in a contrastive objective by adopting multiple augmentation strategies, including span deletion and span substitution. Besides, we design a Temporal-Alignment attention to semantically align the speech-text clues in the learned common space and benefit the SQA tasks. By this means, the training schemes can more effectively guide the generation model to predict more proper answers. Experimental results show that our model achieves state-of-the-art results on three SQA benchmarks.


SimCVD: Simple Contrastive Voxel-Wise Representation Distillation for Semi-Supervised Medical Image Segmentation

arXiv.org Artificial Intelligence

Automated segmentation in medical image analysis is a challenging task that requires a large amount of manually labeled data. However, most existing learning-based approaches usually suffer from limited manually annotated medical data, which poses a major practical problem for accurate and robust medical image segmentation. In addition, most existing semi-supervised approaches are usually not robust compared with the supervised counterparts, and also lack explicit modeling of geometric structure and semantic information, both of which limit the segmentation accuracy. In this work, we present SimCVD, a simple contrastive distillation framework that significantly advances state-of-the-art voxel-wise representation learning. We first describe an unsupervised training strategy, which takes two views of an input volume and predicts their signed distance maps of object boundaries in a contrastive objective, with only two independent dropout as mask. This simple approach works surprisingly well, performing on the same level as previous fully supervised methods with much less labeled data. We hypothesize that dropout can be viewed as a minimal form of data augmentation and makes the network robust to representation collapse. Then, we propose to perform structural distillation by distilling pair-wise similarities. We evaluate SimCVD on two popular datasets: the Left Atrial Segmentation Challenge (LA) and the NIH pancreas CT dataset. The results on the LA dataset demonstrate that, in two types of labeled ratios (i.e., 20% and 10%), SimCVD achieves an average Dice score of 90.85% and 89.03% respectively, a 0.91% and 2.22% improvement compared to previous best results. Our method can be trained in an end-to-end fashion, showing the promise of utilizing SimCVD as a general framework for downstream tasks, such as medical image synthesis and registration.


Self-supervised Dialogue Learning for Spoken Conversational Question Answering

arXiv.org Artificial Intelligence

In spoken conversational question answering (SCQA), the answer to the corresponding question is generated by retrieving and then analyzing a fixed spoken document, including multi-part conversations. Most SCQA systems have considered only retrieving information from ordered utterances. However, the sequential order of dialogue is important to build a robust spoken conversational question answering system, and the changes of utterances order may severely result in low-quality and incoherent corpora. To this end, we introduce a self-supervised learning approach, including incoherence discrimination, insertion detection, and question prediction, to explicitly capture the coreference resolution and dialogue coherence among spoken documents. Specifically, we design a joint learning framework where the auxiliary self-supervised tasks can enable the pre-trained SCQA systems towards more coherent and meaningful spoken dialogue learning. We also utilize the proposed self-supervised learning tasks to capture intra-sentence coherence. Experimental results demonstrate that our proposed method provides more coherent, meaningful, and appropriate responses, yielding superior performance gains compared to the original pre-trained language models. Our method achieves state-of-the-art results on the Spoken-CoQA dataset.


Adaptive Bi-directional Attention: Exploring Multi-Granularity Representations for Machine Reading Comprehension

arXiv.org Artificial Intelligence

Recently, the attention-enhanced multi-layer encoder, such as Transformer, has been extensively studied in Machine Reading Comprehension (MRC). To predict the answer, it is common practice to employ a predictor to draw information only from the final encoder layer which generates the \textit{coarse-grained} representations of the source sequences, i.e., passage and question. Previous studies have shown that the representation of source sequence becomes more \textit{coarse-grained} from \textit{fine-grained} as the encoding layer increases. It is generally believed that with the growing number of layers in deep neural networks, the encoding process will gather relevant information for each location increasingly, resulting in more \textit{coarse-grained} representations, which adds the likelihood of similarity to other locations (referring to homogeneity). Such a phenomenon will mislead the model to make wrong judgments so as to degrade the performance. To this end, we propose a novel approach called Adaptive Bidirectional Attention, which adaptively exploits the source representations of different levels to the predictor. Experimental results on the benchmark dataset, SQuAD 2.0 demonstrate the effectiveness of our approach, and the results are better than the previous state-of-the-art model by 2.5$\%$ EM and 2.3$\%$ F1 scores.