Goto

Collaborating Authors

 Ying, Lexing


Why resampling outperforms reweighting for correcting sampling bias

arXiv.org Machine Learning

A data set sampled from a certain population is biased if the subgroups of the population are sampled at proportions that are significantly different from their underlying proportions. Training machine learning models on biased data sets requires correction techniques to compensate for potential biases. We consider two commonly-used techniques, resampling and reweighting, that rebalance the proportions of the subgroups to maintain the desired objective function. Though statistically equivalent, it has been observed that reweighting outperforms resampling when combined with stochastic gradient algorithms. By analyzing illustrative examples, we explain the reason behind this phenomenon using tools from dynamical stability and stochastic asymptotics. We also present experiments from regression, classification, and off-policy prediction to demonstrate that this is a general phenomenon. We argue that it is imperative to consider the objective function design and the optimization algorithm together while addressing the sampling bias.


Borrowing From the Future: Addressing Double Sampling in Model-free Control

arXiv.org Machine Learning

In model-free reinforcement learning, the temporal difference method and its variants become unstable when combined with nonlinear function approximations. Bellman residual minimization with stochastic gradient descent (SGD) is more stable, but it suffers from the double sampling problem: given the current state, two independent samples for the next state are required, but often only one sample is available. Recently, the authors of Zhu et al. [2020] introduced the borrowing from the future (BFF) algorithm to address this issue for the prediction problem. The main idea is to borrow extra randomness from the future to approximately re-sample the next state when the underlying dynamics of the problem are sufficiently smooth. This paper extends the BFF algorithm to action-value function based model-free control. We prove that BFF is close to unbiased SGD when the underlying dynamics vary slowly with respect to actions. We confirm our theoretical findings with numerical simulations.


Stochastic modified equations for the asynchronous stochastic gradient descent

arXiv.org Machine Learning

We propose a stochastic modified equations (SME) for modeling the asynchronous stochastic gradient descent (ASGD) algorithms. The resulting SME of Langevin type extracts more information about the ASGD dynamics and elucidates the relationship between different types of stochastic gradient algorithms. We show the convergence of ASGD to the SME in the continuous time limit, as well as the SME's precise prediction to the trajectories of ASGD with various forcing terms. As an application of the SME, we propose an optimal mini-batching strategy for ASGD via solving the optimal control problem of the associated SME.


Solving for high dimensional committor functions using artificial neural networks

arXiv.org Machine Learning

In this note we propose a method based on artificial neural network to study the transition between states governed by stochastic processes. In particular, we aim for numerical schemes for the committor function, the central object of transition path theory, which satisfies a high-dimensional Fokker-Planck equation. By working with the variational formulation of such partial differential equation and parameterizing the committor function in terms of a neural network, approximations can be obtained via optimizing the neural network weights using stochastic algorithms. The numerical examples show that moderate accuracy can be achieved for high-dimensional problems.