Not enough data to create a plot.
Try a different view from the menu above.
Yarotsky, Dmitry
SGD with memory: fundamental properties and stochastic acceleration
Yarotsky, Dmitry, Velikanov, Maksim
An important open problem is the theoretically feasible acceleration of mini-batch SGD-type algorithms on quadratic problems with power-law spectrum. In the non-stochastic setting, the optimal exponent $\xi$ in the loss convergence $L_t\sim C_Lt^{-\xi}$ is double that in plain GD and is achievable using Heavy Ball (HB) with a suitable schedule; this no longer works in the presence of mini-batch noise. We address this challenge by considering first-order methods with an arbitrary fixed number $M$ of auxiliary velocity vectors (*memory-$M$ algorithms*). We first prove an equivalence between two forms of such algorithms and describe them in terms of suitable characteristic polynomials. Then we develop a general expansion of the loss in terms of signal and noise propagators. Using it, we show that losses of stationary stable memory-$M$ algorithms always retain the exponent $\xi$ of plain GD, but can have different constants $C_L$ depending on their effective learning rate that generalizes that of HB. We prove that in memory-1 algorithms we can make $C_L$ arbitrarily small while maintaining stability. As a consequence, we propose a memory-1 algorithm with a time-dependent schedule that we show heuristically and experimentally to improve the exponent $\xi$ of plain SGD.
Generalization error of spectral algorithms
Velikanov, Maksim, Panov, Maxim, Yarotsky, Dmitry
The asymptotically precise estimation of the generalization of kernel methods has recently received attention due to the parallels between neural networks and their associated kernels. However, prior works derive such estimates for training by kernel ridge regression (KRR), whereas neural networks are typically trained with gradient descent (GD). In the present work, we consider the training of kernels with a family of $\textit{spectral algorithms}$ specified by profile $h(\lambda)$, and including KRR and GD as special cases. Then, we derive the generalization error as a functional of learning profile $h(\lambda)$ for two data models: high-dimensional Gaussian and low-dimensional translation-invariant model. Under power-law assumptions on the spectrum of the kernel and target, we use our framework to (i) give full loss asymptotics for both noisy and noiseless observations (ii) show that the loss localizes on certain spectral scales, giving a new perspective on the KRR saturation phenomenon (iii) conjecture, and demonstrate for the considered data models, the universality of the loss w.r.t. non-spectral details of the problem, but only in case of noisy observation.
Structure of universal formulas
Yarotsky, Dmitry
By universal formulas we understand parameterized analytic expressions that have a fixed complexity, but nevertheless can approximate any continuous function on a compact set. There exist various examples of such formulas, including some in the form of neural networks. In this paper we analyze the essential structural elements of these highly expressive models. We introduce a hierarchy of expressiveness classes connecting the global approximability property to the weaker property of infinite VC dimension, and prove a series of classification results for several increasingly complex functional families. In particular, we introduce a general family of polynomially-exponentially-algebraic functions that, as we prove, is subject to polynomial constraints. As a consequence, we show that fixed-size neural networks with not more than one layer of neurons having transcendental activations (e.g., sine or standard sigmoid) cannot in general approximate functions on arbitrary finite sets. On the other hand, we give examples of functional families, including two-hidden-layer neural networks, that approximate functions on arbitrary finite sets, but fail to do that on the whole domain of definition.
Tight Convergence Rate Bounds for Optimization Under Power Law Spectral Conditions
Velikanov, Maksim, Yarotsky, Dmitry
Performance of optimization on quadratic problems sensitively depends on the low-lying part of the spectrum. For large (effectively infinite-dimensional) problems, this part of the spectrum can often be naturally represented or approximated by power law distributions, resulting in power law convergence rates for iterative solutions of these problems by gradient-based algorithms. In this paper, we propose a new spectral condition providing tighter upper bounds for problems with power law optimization trajectories. We use this condition to build a complete picture of upper and lower bounds for a wide range of optimization algorithms -- Gradient Descent, Steepest Descent, Heavy Ball, and Conjugate Gradients -- with an emphasis on the underlying schedules of learning rate and momentum. In particular, we demonstrate how an optimally accelerated method, its schedule, and convergence upper bound can be obtained in a unified manner for a given shape of the spectrum. Also, we provide first proofs of tight lower bounds for convergence rates of Steepest Descent and Conjugate Gradients under spectral power laws with general exponents. Our experiments show that the obtained convergence bounds and acceleration strategies are not only relevant for exactly quadratic optimization problems, but also fairly accurate when applied to the training of neural networks.
A view of mini-batch SGD via generating functions: conditions of convergence, phase transitions, benefit from negative momenta
Velikanov, Maksim, Kuznedelev, Denis, Yarotsky, Dmitry
Mini-batch SGD with momentum is a fundamental algorithm for learning large predictive models. In this paper we develop a new analytic framework to analyze noise-averaged properties of mini-batch SGD for linear models at constant learning rates, momenta and sizes of batches. Our key idea is to consider the dynamics of the second moments of model parameters for a special family of "Spectrally Expressible" approximations. This allows to obtain an explicit expression for the generating function of the sequence of loss values. By analyzing this generating function, we find, in particular, that 1) the SGD dynamics exhibits several convergent and divergent regimes depending on the spectral distributions of the problem; 2) the convergent regimes admit explicit stability conditions, and explicit loss asymptotics in the case of power-law spectral distributions; 3) the optimal convergence rate can be achieved at negative momenta. We verify our theoretical predictions by extensive experiments with MNIST, CIFAR10 and synthetic problems, and find a good quantitative agreement.
Universal scaling laws in the gradient descent training of neural networks
Velikanov, Maksim, Yarotsky, Dmitry
Current theoretical results on optimization trajectories of neural networks trained by gradient descent typically have the form of rigorous but potentially loose bounds on the loss values. In the present work we take a different approach and show that the learning trajectory can be characterized by an explicit asymptotic at large training times. Specifically, the leading term in the asymptotic expansion of the loss behaves as a power law $L(t) \sim t^{-\xi}$ with exponent $\xi$ expressed only through the data dimension, the smoothness of the activation function, and the class of function being approximated. Our results are based on spectral analysis of the integral operator representing the linearized evolution of a large network trained on the expected loss. Importantly, the techniques we employ do not require specific form of a data distribution, for example Gaussian, thus making our findings sufficiently universal.
Low-loss connection of weight vectors: distribution-based approaches
Anokhin, Ivan, Yarotsky, Dmitry
Recent research shows that sublevel sets of the loss surfaces of overparameterized networks are connected, exactly or approximately. We describe and compare experimentally a panel of methods used to connect two low-loss points by a low-loss curve on this surface. Our methods vary in accuracy and complexity. Most of our methods are based on "macroscopic" distributional assumptions, and some are insensitive to the detailed properties of the points to be connected. Some methods require a prior training of a "global connection model" which can then be applied to any pair of points. The accuracy of the method generally correlates with its complexity and sensitivity to the endpoint detail.
GTApprox: surrogate modeling for industrial design
Belyaev, Mikhail, Burnaev, Evgeny, Kapushev, Ermek, Panov, Maxim, Prikhodko, Pavel, Vetrov, Dmitry, Yarotsky, Dmitry
We describe GTApprox - a new tool for medium-scale surrogate modeling in industrial design. Compared to existing software, GTApprox brings several innovations: a few novel approximation algorithms, several advanced methods of automated model selection, novel options in the form of hints. We demonstrate the efficiency of GTApprox on a large collection of test problems. In addition, we describe several applications of GTApprox to real engineering problems.