Plotting

 Yang, Yaodong


CivRealm: A Learning and Reasoning Odyssey in Civilization for Decision-Making Agents

arXiv.org Artificial Intelligence

The generalization of decision-making agents encompasses two fundamental elements: learning from past experiences and reasoning in novel contexts. However, the predominant emphasis in most interactive environments is on learning, often at the expense of complexity in reasoning. In this paper, we introduce CivRealm, an environment inspired by the Civilization game. Civilization's profound alignment with human history and society necessitates sophisticated learning, while its ever-changing situations demand strong reasoning to generalize. Particularly, CivRealm sets up an imperfect-information general-sum game with a changing number of players; it presents a plethora of complex features, challenging the agent to deal with open-ended stochastic environments that require diplomacy and negotiation skills. Within CivRealm, we provide interfaces for two typical agent types: tensor-based agents that focus on learning, and language-based agents that emphasize reasoning. To catalyze further research, we present initial results for both paradigms. The canonical RL-based agents exhibit reasonable performance in mini-games, whereas both RL- and LLM-based agents struggle to make substantial progress in the full game. Overall, CivRealm stands as a unique learning and reasoning challenge for decision-making agents. The code is available at https://github.com/bigai-ai/civrealm.


ProAgent: Building Proactive Cooperative Agents with Large Language Models

arXiv.org Artificial Intelligence

Building agents with adaptive behavior in cooperative tasks stands as a paramount goal in the realm of multi-agent systems. Current approaches to developing cooperative agents rely primarily on learning-based methods, whose policy generalization depends heavily on the diversity of teammates they interact with during the training phase. Such reliance, however, constrains the agents' capacity for strategic adaptation when cooperating with unfamiliar teammates, which becomes a significant challenge in zero-shot coordination scenarios. To address this challenge, we propose ProAgent, a novel framework that harnesses large language models (LLMs) to create proactive agents capable of dynamically adapting their behavior to enhance cooperation with teammates. ProAgent can analyze the present state, and infer the intentions of teammates from observations. It then updates its beliefs in alignment with the teammates' subsequent actual behaviors. Moreover, ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various of coordination scenarios. Experimental evaluations conducted within the Overcooked-AI environment unveil the remarkable performance superiority of ProAgent, outperforming five methods based on self-play and population-based training when cooperating with AI agents. Furthermore, in partnered with human proxy models, its performance exhibits an average improvement exceeding 10% compared to the current state-of-the-art method. For more information about our project, please visit~\url{https://pku-proagent.github.io}.


STAS: Spatial-Temporal Return Decomposition for Multi-agent Reinforcement Learning

arXiv.org Artificial Intelligence

Centralized Training with Decentralized Execution (CTDE) has been proven to be an effective paradigm in cooperative multi-agent reinforcement learning (MARL). One of the major challenges is credit assignment, which aims to credit agents by their contributions. While prior studies have shown great success, their methods typically fail to work in episodic reinforcement learning scenarios where global rewards are revealed only at the end of the episode. They lack the functionality to model complicated relations of the delayed global reward in the temporal dimension and suffer from inefficiencies. To tackle this, we introduce Spatial-Temporal Attention with Shapley (STAS), a novel method that learns credit assignment in both temporal and spatial dimensions. It first decomposes the global return back to each time step, then utilizes the Shapley Value to redistribute the individual payoff from the decomposed global reward. To mitigate the computational complexity of the Shapley Value, we introduce an approximation of marginal contribution and utilize Monte Carlo sampling to estimate it. We evaluate our method on an Alice & Bob example and MPE environments across different scenarios. Our results demonstrate that our method effectively assigns spatial-temporal credit, outperforming all state-of-the-art baselines.


AI Alignment: A Comprehensive Survey

arXiv.org Artificial Intelligence

AI alignment aims to make AI systems behave in line with human intentions and values. As AI systems grow more capable, so do risks from misalignment. To provide a comprehensive and up-to-date overview of the alignment field, in this survey, we delve into the core concepts, methodology, and practice of alignment. First, we identify four principles as the key objectives of AI alignment: Robustness, Interpretability, Controllability, and Ethicality (RICE). Guided by these four principles, we outline the landscape of current alignment research and decompose them into two key components: forward alignment and backward alignment. The former aims to make AI systems aligned via alignment training, while the latter aims to gain evidence about the systems' alignment and govern them appropriately to avoid exacerbating misalignment risks. On forward alignment, we discuss techniques for learning from feedback and learning under distribution shift. On backward alignment, we discuss assurance techniques and governance practices. We also release and continually update the website (www.alignmentsurvey.com) which features tutorials, collections of papers, blog posts, and other resources.


Heterogeneous-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

The necessity for cooperation among intelligent machines has popularised cooperative multi-agent reinforcement learning (MARL) in AI research. However, many research endeavours heavily rely on parameter sharing among agents, which confines them to only homogeneous-agent setting and leads to training instability and lack of convergence guarantees. To achieve effective cooperation in the general heterogeneous-agent setting, we propose Heterogeneous-Agent Reinforcement Learning (HARL) algorithms that resolve the aforementioned issues. Central to our findings are the multi-agent advantage decomposition lemma and the sequential update scheme . Based on these, we develop the provably correct Heterogeneous-Agent Trust Region Learning (HATRL), and derive HATRPO and HAPPO by tractable approximations. Furthermore, we discover a novel framework named Heterogeneous-Agent Mirror Learning (HAML), which strengthens theoretical guarantees for HATRPO and HAPPO and provides a general template for cooperative MARL algorithmic designs. We prove that all algorithms derived from HAML inherently enjoy monotonic improvement of joint return and convergence to Nash Equilibrium. As its natural outcome, HAML validates more novel algorithms in addition to HATRPO and HAPPO, including HAA2C, HADDPG, and HATD3, which generally outperform their existing MAcounterparts. We comprehensively test HARL algorithms on six challenging benchmarks and demonstrate their superior effectiveness and stability for coordinating heterogeneous agents compared to strong baselines such as MAPPO and QMIX.


A Perspective of Q-value Estimation on Offline-to-Online Reinforcement Learning

arXiv.org Artificial Intelligence

Offline-to-online Reinforcement Learning (O2O RL) aims to improve the performance of offline pretrained policy using only a few online samples. Built on offline RL algorithms, most O2O methods focus on the balance between RL objective and pessimism, or the utilization of offline and online samples. In this paper, from a novel perspective, we systematically study the challenges that remain in O2O RL and identify that the reason behind the slow improvement of the performance and the instability of online finetuning lies in the inaccurate Q-value estimation inherited from offline pretraining. Specifically, we demonstrate that the estimation bias and the inaccurate rank of Q-value cause a misleading signal for the policy update, making the standard offline RL algorithms, such as CQL and TD3-BC, ineffective in the online finetuning. Based on this observation, we address the problem of Q-value estimation by two techniques: (1) perturbed value update and (2) increased frequency of Q-value updates. The first technique smooths out biased Q-value estimation with sharp peaks, preventing early-stage policy exploitation of sub-optimal actions. The second one alleviates the estimation bias inherited from offline pretraining by accelerating learning. Extensive experiments on the MuJoco and Adroit environments demonstrate that the proposed method, named SO2, significantly alleviates Q-value estimation issues, and consistently improves the performance against the state-of-the-art methods by up to 83.1%.


JARVIS-1: Open-World Multi-task Agents with Memory-Augmented Multimodal Language Models

arXiv.org Artificial Intelligence

Achieving human-like planning and control with multimodal observations in an open world is a key milestone for more functional generalist agents. Existing approaches can handle certain long-horizon tasks in an open world. However, they still struggle when the number of open-world tasks could potentially be infinite and lack the capability to progressively enhance task completion as game time progresses. We introduce JARVIS-1, an open-world agent that can perceive multimodal input (visual observations and human instructions), generate sophisticated plans, and perform embodied control, all within the popular yet challenging open-world Minecraft universe. Specifically, we develop JARVIS-1 on top of pre-trained multimodal language models, which map visual observations and textual instructions to plans. The plans will be ultimately dispatched to the goal-conditioned controllers. We outfit JARVIS-1 with a multimodal memory, which facilitates planning using both pre-trained knowledge and its actual game survival experiences. JARVIS-1 is the existing most general agent in Minecraft, capable of completing over 200 different tasks using control and observation space similar to humans. These tasks range from short-horizon tasks, e.g., "chopping trees" to long-horizon tasks, e.g., "obtaining a diamond pickaxe". JARVIS-1 performs exceptionally well in short-horizon tasks, achieving nearly perfect performance. In the classic long-term task of $\texttt{ObtainDiamondPickaxe}$, JARVIS-1 surpasses the reliability of current state-of-the-art agents by 5 times and can successfully complete longer-horizon and more challenging tasks. The project page is available at https://craftjarvis.org/JARVIS-1


Policy Space Diversity for Non-Transitive Games

arXiv.org Artificial Intelligence

Policy-Space Response Oracles (PSRO) is an influential algorithm framework for approximating a Nash Equilibrium (NE) in multi-agent non-transitive games. Many previous studies have been trying to promote policy diversity in PSRO. A major weakness in existing diversity metrics is that a more diverse (according to their diversity metrics) population does not necessarily mean (as we proved in the paper) a better approximation to a NE. To alleviate this problem, we propose a new diversity metric, the improvement of which guarantees a better approximation to a NE. Meanwhile, we develop a practical and well-justified method to optimize our diversity metric using only state-action samples. By incorporating our diversity regularization into the best response solving in PSRO, we obtain a new PSRO variant, Policy Space Diversity PSRO (PSD-PSRO). We present the convergence property of PSD-PSRO. Empirically, extensive experiments on various games demonstrate that PSD-PSRO is more effective in producing significantly less exploitable policies than state-of-the-art PSRO variants.


Safety-Gymnasium: A Unified Safe Reinforcement Learning Benchmark

arXiv.org Artificial Intelligence

Artificial intelligence (AI) systems possess significant potential to drive societal progress. However, their deployment often faces obstacles due to substantial safety concerns. Safe reinforcement learning (SafeRL) emerges as a solution to optimize policies while simultaneously adhering to multiple constraints, thereby addressing the challenge of integrating reinforcement learning in safety-critical scenarios. In this paper, we present an environment suite called Safety-Gymnasium, which encompasses safety-critical tasks in both single and multi-agent scenarios, accepting vector and vision-only input. Additionally, we offer a library of algorithms named Safe Policy Optimization (SafePO), comprising 16 state-of-the-art SafeRL algorithms. This comprehensive library can serve as a validation tool for the research community. By introducing this benchmark, we aim to facilitate the evaluation and comparison of safety performance, thus fostering the development of reinforcement learning for safer, more reliable, and responsible real-world applications. The website of this project can be accessed at https://sites.google.com/view/safety-gymnasium.


MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

arXiv.org Artificial Intelligence

A significant challenge facing researchers in the area of multi-agent reinforcement learning (MARL) pertains to the identification of a library that can offer fast and compatible development for multi-agent tasks and algorithm combinations, while obviating the need to consider compatibility issues. In this paper, we present MARLlib, a library designed to address the aforementioned challenge by leveraging three key mechanisms: 1) a standardized multi-agent environment wrapper, 2) an agent-level algorithm implementation, and 3) a flexible policy mapping strategy. By utilizing these mechanisms, MARLlib can effectively disentangle the intertwined nature of the multi-agent task and the learning process of the algorithm, with the ability to automatically alter the training strategy based on the current task's attributes.