Plotting

 Yang, Yang


BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations

arXiv.org Artificial Intelligence

Brain network analysis is vital for understanding the neural interactions regarding brain structures and functions, and identifying potential biomarkers for clinical phenotypes. However, widely used brain signals such as Blood Oxygen Level Dependent (BOLD) time series generated from functional Magnetic Resonance Imaging (fMRI) often manifest three challenges: (1) missing values, (2) irregular samples, and (3) sampling misalignment, due to instrumental limitations, impacting downstream brain network analysis and clinical outcome predictions. In this work, we propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals using Ordinary Differential Equations (ODE). By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point, mitigating the aforementioned three data challenges of brain signals altogether. Comprehensive experimental results on real-world neuroimaging datasets demonstrate the superior performance of BrainODE and its capability of addressing the three data challenges.


Retrieval-Oriented Knowledge for Click-Through Rate Prediction

arXiv.org Artificial Intelligence

Click-through rate (CTR) prediction plays an important role in personalized recommendations. Recently, sample-level retrieval-based models (e.g., RIM) have achieved remarkable performance by retrieving and aggregating relevant samples. However, their inefficiency at the inference stage makes them impractical for industrial applications. To overcome this issue, this paper proposes a universal plug-and-play Retrieval-Oriented Knowledge (ROK) framework. Specifically, a knowledge base, consisting of a retrieval-oriented embedding layer and a knowledge encoder, is designed to preserve and imitate the retrieved & aggregated representations in a decomposition-reconstruction paradigm. Knowledge distillation and contrastive learning methods are utilized to optimize the knowledge base, and the learned retrieval-enhanced representations can be integrated with arbitrary CTR models in both instance-wise and feature-wise manners. Extensive experiments on three large-scale datasets show that ROK achieves competitive performance with the retrieval-based CTR models while reserving superior inference efficiency and model compatibility.


Implementation of Big AI Models for Wireless Networks with Collaborative Edge Computing

arXiv.org Artificial Intelligence

Big Artificial Intelligence (AI) models have emerged as a crucial element in various intelligent applications at the edge, such as voice assistants in smart homes and autonomous robotics in smart factories. Training big AI models, e.g., for personalized fine-tuning and continual model refinement, poses significant challenges to edge devices due to the inherent conflict between limited computing resources and intensive workload associated with training. Despite the constraints of on-device training, traditional approaches usually resort to aggregating training data and sending it to a remote cloud for centralized training. Nevertheless, this approach is neither sustainable, which strains long-range backhaul transmission and energy-consuming datacenters, nor safely private, which shares users' raw data with remote infrastructures. To address these challenges, we alternatively observe that prevalent edge environments usually contain a diverse collection of trusted edge devices with untapped idle resources, which can be leveraged for edge training acceleration. Motivated by this, in this article, we propose collaborative edge training, a novel training mechanism that orchestrates a group of trusted edge devices as a resource pool for expedited, sustainable big AI model training at the edge. As an initial step, we present a comprehensive framework for building collaborative edge training systems and analyze in-depth its merits and sustainable scheduling choices following its workflow. To further investigate the impact of its parallelism design, we empirically study a case of four typical parallelisms from the perspective of energy demand with realistic testbeds. Finally, we discuss open challenges for sustainable collaborative edge training to point to future directions of edge-centric big AI model training.


Online Planning of Power Flows for Power Systems Against Bushfires Using Spatial Context

arXiv.org Artificial Intelligence

The 2019-20 Australia bushfire incurred numerous economic losses and significantly affected the operations of power systems. A power station or transmission line can be significantly affected due to bushfires, leading to an increase in operational costs. We study a fundamental but challenging problem of planning the optimal power flow (OPF) for power systems subject to bushfires. Considering the stochastic nature of bushfire spread, we develop a model to capture such dynamics based on Moore's neighborhood model. Under a periodic inspection scheme that reveals the in-situ bushfire status, we propose an online optimization modeling framework that sequentially plans the power flows in the electricity network. Our framework assumes that the spread of bushfires is non-stationary over time, and the spread and containment probabilities are unknown. To meet these challenges, we develop a contextual online learning algorithm that treats the in-situ geographical information of the bushfire as a 'spatial context'. The online learning algorithm learns the unknown probabilities sequentially based on the observed data and then makes the OPF decision accordingly. The sequential OPF decisions aim to minimize the regret function, which is defined as the cumulative loss against the clairvoyant strategy that knows the true model parameters. We provide a theoretical guarantee of our algorithm by deriving a bound on the regret function, which outperforms the regret bound achieved by other benchmark algorithms. Our model assumptions are verified by the real bushfire data from NSW, Australia, and we apply our model to two power systems to illustrate its applicability.


VFLGAN: Vertical Federated Learning-based Generative Adversarial Network for Vertically Partitioned Data Publication

arXiv.org Artificial Intelligence

In the current artificial intelligence (AI) era, the scale and quality of the dataset play a crucial role in training a high-quality AI model. However, good data is not a free lunch and is always hard to access due to privacy regulations like the General Data Protection Regulation (GDPR). A potential solution is to release a synthetic dataset with a similar distribution to that of the private dataset. Nevertheless, in some scenarios, it has been found that the attributes needed to train an AI model belong to different parties, and they cannot share the raw data for synthetic data publication due to privacy regulations. In PETS 2023, Xue et al. proposed the first generative adversary network-based model, VertiGAN, for vertically partitioned data publication. However, after thoroughly investigating, we found that VertiGAN is less effective in preserving the correlation among the attributes of different parties. This article proposes a Vertical Federated Learning-based Generative Adversarial Network, VFLGAN, for vertically partitioned data publication to address the above issues. Our experimental results show that compared with VertiGAN, VFLGAN significantly improves the quality of synthetic data. Taking the MNIST dataset as an example, the quality of the synthetic dataset generated by VFLGAN is 3.2 times better than that generated by VertiGAN w.r.t. the Fr\'echet Distance. We also designed a more efficient and effective Gaussian mechanism for the proposed VFLGAN to provide the synthetic dataset with a differential privacy guarantee. On the other hand, differential privacy only gives the upper bound of the worst-case privacy guarantee. This article also proposes a practical auditing scheme that applies membership inference attacks to estimate privacy leakage through the synthetic dataset.


Learning to Rebalance Multi-Modal Optimization by Adaptively Masking Subnetworks

arXiv.org Artificial Intelligence

Multi-modal learning aims to enhance performance by unifying models from various modalities but often faces the "modality imbalance" problem in real data, leading to a bias towards dominant modalities and neglecting others, thereby limiting its overall effectiveness. To address this challenge, the core idea is to balance the optimization of each modality to achieve a joint optimum. Existing approaches often employ a modal-level control mechanism for adjusting the update of each modal parameter. However, such a global-wise updating mechanism ignores the different importance of each parameter. Inspired by subnetwork optimization, we explore a uniform sampling-based optimization strategy and find it more effective than global-wise updating. According to the findings, we further propose a novel importance sampling-based, element-wise joint optimization method, called Adaptively Mask Subnetworks Considering Modal Significance(AMSS). Specifically, we incorporate mutual information rates to determine the modal significance and employ non-uniform adaptive sampling to select foreground subnetworks from each modality for parameter updates, thereby rebalancing multi-modal learning. Additionally, we demonstrate the reliability of the AMSS strategy through convergence analysis. Building upon theoretical insights, we further enhance the multi-modal mask subnetwork strategy using unbiased estimation, referred to as AMSS+. Extensive experiments reveal the superiority of our approach over comparison methods.


JobFormer: Skill-Aware Job Recommendation with Semantic-Enhanced Transformer

arXiv.org Artificial Intelligence

Job recommendation aims to provide potential talents with suitable job descriptions (JDs) consistent with their career trajectory, which plays an essential role in proactive talent recruitment. In real-world management scenarios, the available JD-user records always consist of JDs, user profiles, and click data, in which the user profiles are typically summarized as the user's skill distribution for privacy reasons. Although existing sophisticated recommendation methods can be directly employed, effective recommendation still has challenges considering the information deficit of JD itself and the natural heterogeneous gap between JD and user profile. To address these challenges, we proposed a novel skill-aware recommendation model based on the designed semantic-enhanced transformer to parse JDs and complete personalized job recommendation. Specifically, we first model the relative items of each JD and then adopt an encoder with the local-global attention mechanism to better mine the intra-job and inter-job dependencies from JD tuples. Moreover, we adopt a two-stage learning strategy for skill-aware recommendation, in which we utilize the skill distribution to guide JD representation learning in the recall stage, and then combine the user profiles for final prediction in the ranking stage. Consequently, we can embed rich contextual semantic representations for learning JDs, while skill-aware recommendation provides effective JD-user joint representation for click-through rate (CTR) prediction. To validate the superior performance of our method for job recommendation, we present a thorough empirical analysis of large-scale real-world and public datasets to demonstrate its effectiveness and interpretability.


NJUST-KMG at TRAC-2024 Tasks 1 and 2: Offline Harm Potential Identification

arXiv.org Artificial Intelligence

This report provide a detailed description of the method that we proposed in the TRAC-2024 Offline Harm Potential dentification which encloses two sub-tasks. The investigation utilized a rich dataset comprised of social media comments in several Indian languages, annotated with precision by expert judges to capture the nuanced implications for offline context harm. The objective assigned to the participants was to design algorithms capable of accurately assessing the likelihood of harm in given situations and identifying the most likely target(s) of offline harm. Our approach ranked second in two separate tracks, with F1 values of 0.73 and 0.96 respectively. Our method principally involved selecting pretrained models for finetuning, incorporating contrastive learning techniques, and culminating in an ensemble approach for the test set.


Solution for Emotion Prediction Competition of Workshop on Emotionally and Culturally Intelligent AI

arXiv.org Artificial Intelligence

This report provide a detailed description of the method that we explored and proposed in the WECIA Emotion Prediction Competition (EPC), which predicts a person's emotion through an artistic work with a comment. The dataset of this competition is ArtELingo, designed to encourage work on diversity across languages and cultures. The dataset has two main challenges, namely modal imbalance problem and language-cultural differences problem. In order to address this issue, we propose a simple yet effective approach called single-multi modal with Emotion-Cultural specific prompt(ECSP), which focuses on using the single modal message to enhance the performance of multimodal models and a well-designed prompt to reduce cultural differences problem. To clarify, our approach contains two main blocks: (1)XLM-R\cite{conneau2019unsupervised} based unimodal model and X$^2$-VLM\cite{zeng2022x} based multimodal model (2) Emotion-Cultural specific prompt. Our approach ranked first in the final test with a score of 0.627.


Brant-2: Foundation Model for Brain Signals

arXiv.org Artificial Intelligence

Foundational models benefit from pre-training on large amounts of unlabeled data and enable strong performance in a wide variety of applications with a small amount of labeled data. Such models can be particularly effective in analyzing brain signals, as this field encompasses numerous application scenarios, and it is costly to perform large-scale annotation. In this work, we present the largest foundation model in brain signals, Brant-2. Compared to Brant, a foundation model designed for intracranial neural signals, Brant-2 not only exhibits robustness towards data variations and modeling scales but also can be applied to a broader range of brain neural data. By experimenting on an extensive range of tasks, we demonstrate that Brant-2 is adaptive to various application scenarios in brain signals. Further analyses reveal the scalability of the Brant-2, validate each component's effectiveness, and showcase our model's ability to maintain performance in scenarios with scarce labels.