Goto

Collaborating Authors

 Yang, Xin


Fast Quantum Algorithm for Attention Computation

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated exceptional performance across a wide range of tasks. These models, powered by advanced deep learning techniques, have revolutionized the field of natural language processing (NLP) and have achieved remarkable results in various language-related tasks. LLMs have excelled in tasks such as machine translation, sentiment analysis, question answering, text generation, text classification, language modeling, and more. They have proven to be highly effective in capturing complex linguistic patterns, understanding context, and generating coherent and contextually relevant text. The attention scheme plays a crucial role in the architecture of large language models (LLMs). It is a fundamental component that enables the model to capture and utilize contextual information during language processing tasks effectively. Making the attention scheme computation faster is one of the central questions to speed up the LLMs computation. It is well-known that quantum machine has certain computational advantages compared to the classical machine. However, it is currently unknown whether quantum computing can aid in LLM. In this work, we focus on utilizing Grover's Search algorithm to compute a sparse attention computation matrix efficiently. We achieve a polynomial quantum speed-up over the classical method. Moreover, the attention matrix outputted by our quantum algorithm exhibits an extra low-rank structure that will be useful in obtaining a faster training algorithm for LLMs. Additionally, we present a detailed analysis of the algorithm's error analysis and time complexity within the context of computing the attention matrix.


An image segmentation algorithm based on multi-scale feature pyramid network

arXiv.org Artificial Intelligence

Medical image segmentation is particularly critical as a prerequisite for relevant quantitative analysis in the treatment of clinical diseases. For example, in clinical cervical cancer radiotherapy, after acquiring subabdominal MRI images, a fast and accurate image segmentation of organs and tumors in MRI images can optimize the clinical radiotherapy process, whereas traditional approaches use manual annotation by specialist doctors, which is time consuming and laborious, therefore, automatic organ segmentation of subabdominal MRI images is a valuable research topic. In the field of automatic segmentation in medical image, U Net, proposed by Ronneberger et al. [1] in 2015, still has an irreplaceable influence today. Many transformers of U Net network are proposed, and various plug and play components use it as a backbone network [3 10]. Image semantic segmentation differs from image classification.


Biologically Inspired Dynamic Thresholds for Spiking Neural Networks

arXiv.org Artificial Intelligence

The dynamic membrane potential threshold, as one of the essential properties of a biological neuron, is a spontaneous regulation mechanism that maintains neuronal homeostasis, i.e., the constant overall spiking firing rate of a neuron. As such, the neuron firing rate is regulated by a dynamic spiking threshold, which has been extensively studied in biology. Existing work in the machine learning community does not employ bioinspired spiking threshold schemes. This work aims at bridging this gap by introducing a novel bioinspired dynamic energy-temporal threshold (BDETT) scheme for spiking neural networks (SNNs). The proposed BDETT scheme mirrors two bioplausible observations: a dynamic threshold has 1) a positive correlation with the average membrane potential and 2) a negative correlation with the preceding rate of depolarization. We validate the effectiveness of the proposed BDETT on robot obstacle avoidance and continuous control tasks under both normal conditions and various degraded conditions, including noisy observations, weights, and dynamic environments. We find that the BDETT outperforms existing static and heuristic threshold approaches by significant margins in all tested conditions, and we confirm that the proposed bioinspired dynamic threshold scheme offers homeostasis to SNNs in complex real-world tasks.


Dual-view Correlation Hybrid Attention Network for Robust Holistic Mammogram Classification

arXiv.org Artificial Intelligence

Mammogram image is important for breast cancer screening, and typically obtained in a dual-view form, i.e., cranio-caudal (CC) and mediolateral oblique (MLO), to provide complementary information. However, previous methods mostly learn features from the two views independently, which violates the clinical knowledge and ignores the importance of dual-view correlation. In this paper, we propose a dual-view correlation hybrid attention network (DCHA-Net) for robust holistic mammogram classification. Specifically, DCHA-Net is carefully designed to extract and reinvent deep features for the two views, and meanwhile to maximize the underlying correlations between them. A hybrid attention module, consisting of local relation and non-local attention blocks, is proposed to alleviate the spatial misalignment of the paired views in the correlation maximization. A dual-view correlation loss is introduced to maximize the feature similarity between corresponding strip-like regions with equal distance to the chest wall, motivated by the fact that their features represent the same breast tissues, and thus should be highly-correlated. Experimental results on two public datasets, i.e., INbreast and CBIS-DDSM, demonstrate that DCHA-Net can well preserve and maximize feature correlations across views, and thus outperforms the state-of-the-arts for classifying a whole mammogram as malignant or not.


Differentially Private Attention Computation

arXiv.org Artificial Intelligence

Large language models (LLMs) have had a profound impact on numerous aspects of daily life including natural language processing, content generation, research methodologies and so on. However, one crucial issue concerning the inference results of large language models is security and privacy. In many scenarios, the results generated by LLMs could possibly leak many confidential or copyright information. A recent beautiful and breakthrough work [Vyas, Kakade and Barak 2023] focus on such privacy issue of the LLMs from theoretical perspective. It is well-known that computing the attention matrix is one of the major task during the LLMs computation. Thus, how to give a provable privately guarantees of computing the attention matrix is an important research direction. Previous work [Alman and Song 2023, Brand, Song and Zhou 2023] have proposed provable tight result for fast computation of attention without considering privacy concerns. One natural mathematical formulation to quantity the privacy in theoretical computer science graduate school textbook is differential privacy. Inspired by [Vyas, Kakade and Barak 2023], in this work, we provide a provable result for showing how to differentially private approximate the attention matrix. From technique perspective, our result replies on a pioneering work in the area of differential privacy by [Alabi, Kothari, Tankala, Venkat and Zhang 2022].


Hierarchical Agent-based Reinforcement Learning Framework for Automated Quality Assessment of Fetal Ultrasound Video

arXiv.org Artificial Intelligence

Ultrasound is the primary modality to examine fetal growth during pregnancy, while the image quality could be affected by various factors. Quality assessment is essential for controlling the quality of ultrasound images to guarantee both the perceptual and diagnostic values. Existing automated approaches often require heavy structural annotations and the predictions may not necessarily be consistent with the assessment results by human experts. Furthermore, the overall quality of a scan and the correlation between the quality of frames should not be overlooked. In this work, we propose a reinforcement learning framework powered by two hierarchical agents that collaboratively learn to perform both frame-level and video-level quality assessments. It is equipped with a specially-designed reward mechanism that considers temporal dependency among frame quality and only requires sparse binary annotations to train. Experimental results on a challenging fetal brain dataset verify that the proposed framework could perform dual-level quality assessment and its predictions correlate well with the subjective assessment results.


Label Inference Attack against Split Learning under Regression Setting

arXiv.org Artificial Intelligence

As a crucial building block in vertical Federated Learning (vFL), Split Learning (SL) has demonstrated its practice in the two-party model training collaboration, where one party holds the features of data samples and another party holds the corresponding labels. Such method is claimed to be private considering the shared information is only the embedding vectors and gradients instead of private raw data and labels. However, some recent works have shown that the private labels could be leaked by the gradients. These existing attack only works under the classification setting where the private labels are discrete. In this work, we step further to study the leakage in the scenario of the regression model, where the private labels are continuous numbers (instead of discrete labels in classification). This makes previous attacks harder to infer the continuous labels due to the unbounded output range. To address the limitation, we propose a novel learning-based attack that integrates gradient information and extra learning regularization objectives in aspects of model training properties, which can infer the labels under regression settings effectively. The comprehensive experiments on various datasets and models have demonstrated the effectiveness of our proposed attack. We hope our work can pave the way for future analyses that make the vFL framework more secure.


Robust Multimodal Fusion for Human Activity Recognition

arXiv.org Artificial Intelligence

Sensor data streams are intermittent and noisy in real-world settings. This is primarily because sensors are used in various conditions The proliferation of IoT and mobile devices equipped with heterogeneous and environments without (re)calibration and proper protection, sensors has enabled new applications that rely on the which makes them susceptible to offsets and drifts [23], fusion of time-series data generated by multiple sensors with different in addition to dislocation, deformation, occlusion, and dirt/dust modalities. While there are promising deep neural network buildup [18]. For example, while the total offset and scaling error architectures for multimodal fusion, their performance falls apart of most IMUs, including LSM9DS1 manufactured by STMicroelectronics quickly in the presence of consecutive missing data and noise across and BNO055 by Bosch Sensortec, is within 1%, this error multiple modalities/sensors, the issues that are prevalent in realworld will be much higher if the sensor is not dynamically calibrated in settings. We propose Centaur, a multimodal fusion model the environment. Moreover, wireless sensors often send data to for human activity recognition (HAR) that is robust to these data a node that has enough compute power to run the fusion model.


Netflix and Forget: Efficient and Exact Machine Unlearning from Bi-linear Recommendations

arXiv.org Artificial Intelligence

People break up, miscarry, and lose loved ones. Their online streaming and shopping recommendations, however, do not necessarily update, and may serve as unhappy reminders of their loss. When users want to renege on their past actions, they expect the recommender platforms to erase selective data at the model level. Ideally, given any specified user history, the recommender can unwind or "forget", as if the record was not part of training. To that end, this paper focuses on simple but widely deployed bi-linear models for recommendations based on matrix completion. Without incurring the cost of re-training, and without degrading the model unnecessarily, we develop Unlearn-ALS by making a few key modifications to the fine-tuning procedure under Alternating Least Squares optimisation, thus applicable to any bi-linear models regardless of the training procedure. We show that Unlearn-ALS is consistent with retraining without \emph{any} model degradation and exhibits rapid convergence, making it suitable for a large class of existing recommenders.


DPAUC: Differentially Private AUC Computation in Federated Learning

arXiv.org Artificial Intelligence

Federated learning (FL) has gained significant attention recently as a privacy-enhancing tool to jointly train a machine learning model by multiple participants. The prior work on FL has mostly studied how to protect label privacy during model training. However, model evaluation in FL might also lead to potential leakage of private label information. In this work, we propose an evaluation algorithm that can accurately compute the widely used AUC (area under the curve) metric when using the label differential privacy (DP) in FL. Through extensive experiments, we show our algorithms can compute accurate AUCs compared to the ground truth. The code is available at {\url{https://github.com/bytedance/fedlearner/tree/master/example/privacy/DPAUC}}.