Yang, Xianjun
A Safe Harbor for AI Evaluation and Red Teaming
Longpre, Shayne, Kapoor, Sayash, Klyman, Kevin, Ramaswami, Ashwin, Bommasani, Rishi, Blili-Hamelin, Borhane, Huang, Yangsibo, Skowron, Aviya, Yong, Zheng-Xin, Kotha, Suhas, Zeng, Yi, Shi, Weiyan, Yang, Xianjun, Southen, Reid, Robey, Alexander, Chao, Patrick, Yang, Diyi, Jia, Ruoxi, Kang, Daniel, Pentland, Sandy, Narayanan, Arvind, Liang, Percy, Henderson, Peter
Independent evaluation and red teaming are critical for identifying the risks posed by generative AI systems. However, the terms of service and enforcement strategies used by prominent AI companies to deter model misuse have disincentives on good faith safety evaluations. This causes some researchers to fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal. Although some companies offer researcher access programs, they are an inadequate substitute for independent research access, as they have limited community representation, receive inadequate funding, and lack independence from corporate incentives. We propose that major AI developers commit to providing a legal and technical safe harbor, indemnifying public interest safety research and protecting it from the threat of account suspensions or legal reprisal. These proposals emerged from our collective experience conducting safety, privacy, and trustworthiness research on generative AI systems, where norms and incentives could be better aligned with public interests, without exacerbating model misuse. We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI.
A Self-supervised Pressure Map human keypoint Detection Approch: Optimizing Generalization and Computational Efficiency Across Datasets
Yu, Chengzhang, Yang, Xianjun, Bao, Wenxia, Wang, Shaonan, Yao, Zhiming
In environments where RGB images are inadequate, pressure maps is a viable alternative, garnering scholarly attention. This study introduces a novel self-supervised pressure map keypoint detection (SPMKD) method, addressing the current gap in specialized designs for human keypoint extraction from pressure maps. Central to our contribution is the Encoder-Fuser-Decoder (EFD) model, which is a robust framework that integrates a lightweight encoder for precise human keypoint detection, a fuser for efficient gradient propagation, and a decoder that transforms human keypoints into reconstructed pressure maps. This structure is further enhanced by the Classification-to-Regression Weight Transfer (CRWT) method, which fine-tunes accuracy through initial classification task training. This innovation not only enhances human keypoint generalization without manual annotations but also showcases remarkable efficiency and generalization, evidenced by a reduction to only $5.96\%$ in FLOPs and $1.11\%$ in parameter count compared to the baseline methods.
Test-Time Backdoor Attacks on Multimodal Large Language Models
Lu, Dong, Pang, Tianyu, Du, Chao, Liu, Qian, Yang, Xianjun, Lin, Min
Backdoor attacks are commonly executed by contaminating training data, such that a trigger can activate predetermined harmful effects during the test phase. In this work, we present AnyDoor, a test-time backdoor attack against multimodal large language models (MLLMs), which involves injecting the backdoor into the textual modality using adversarial test images (sharing the same universal perturbation), without requiring access to or modification of the training data. AnyDoor employs similar techniques used in universal adversarial attacks, but distinguishes itself by its ability to decouple the timing of setup and activation of harmful effects. In our experiments, we validate the effectiveness of AnyDoor against popular MLLMs such as LLaVA-1.5, MiniGPT-4, InstructBLIP, and BLIP-2, as well as provide comprehensive ablation studies. Notably, because the backdoor is injected by a universal perturbation, AnyDoor can dynamically change its backdoor trigger prompts/harmful effects, exposing a new challenge for defending against backdoor attacks. Our project page is available at https://sail-sg.github.io/AnyDoor/.
Weak-to-Strong Jailbreaking on Large Language Models
Zhao, Xuandong, Yang, Xianjun, Pang, Tianyu, Du, Chao, Li, Lei, Wang, Yu-Xiang, Wang, William Yang
Large language models (LLMs) are vulnerable to jailbreak attacks - resulting in harmful, unethical, or biased text generations. However, existing jailbreaking methods are computationally costly. In this paper, we propose the weak-to-strong jailbreaking attack, an efficient method to attack aligned LLMs to produce harmful text. Our key intuition is based on the observation that jailbroken and aligned models only differ in their initial decoding distributions. The weak-to-strong attack's key technical insight is using two smaller models (a safe and an unsafe one) to adversarially modify a significantly larger safe model's decoding probabilities. We evaluate the weak-to-strong attack on 5 diverse LLMs from 3 organizations. The results show our method can increase the misalignment rate to over 99% on two datasets with just one forward pass per example. Our study exposes an urgent safety issue that needs to be addressed when aligning LLMs. As an initial attempt, we propose a defense strategy to protect against such attacks, but creating more advanced defenses remains challenging. The code for replicating the method is available at https://github.com/XuandongZhao/weak-to-strong
TrustAgent: Towards Safe and Trustworthy LLM-based Agents through Agent Constitution
Hua, Wenyue, Yang, Xianjun, Li, Zelong, Wei, Cheng, Zhang, Yongfeng
The emergence of LLM-based agents has garnered considerable attention, yet their trustworthiness remains an under-explored area. As agents can directly interact with the physical environment, their reliability and safety is critical. This paper presents an Agent-Constitution-based agent framework, TrustAgent, an initial investigation into improving the safety dimension of trustworthiness in LLM-based agents. This framework consists of threefold strategies: pre-planning strategy which injects safety knowledge to the model prior to plan generation, in-planning strategy which bolsters safety during plan generation, and post-planning strategy which ensures safety by post-planning inspection. Through experimental analysis, we demonstrate how these approaches can effectively elevate an LLM agent's safety by identifying and preventing potential dangers. Furthermore, we explore the intricate relationships between safety and helpfulness, and between the model's reasoning ability and its efficacy as a safe agent. This paper underscores the imperative of integrating safety awareness and trustworthiness into the design and deployment of LLM-based agents, not only to enhance their performance but also to ensure their responsible integration into human-centric environments. Data and code are available at https://github.com/agiresearch/TrustAgent.
Navigating the OverKill in Large Language Models
Shi, Chenyu, Wang, Xiao, Ge, Qiming, Gao, Songyang, Yang, Xianjun, Gui, Tao, Zhang, Qi, Huang, Xuanjing, Zhao, Xun, Lin, Dahua
Large language models are meticulously aligned to be both helpful and harmless. However, recent research points to a potential overkill which means models may refuse to answer benign queries. In this paper, we investigate the factors for overkill by exploring how models handle and determine the safety of queries. Our findings reveal the presence of shortcuts within models, leading to an over-attention of harmful words like 'kill' and prompts emphasizing safety will exacerbate overkill. Based on these insights, we introduce Self-Contrastive Decoding (Self-CD), a training-free and model-agnostic strategy, to alleviate this phenomenon. We first extract such over-attention by amplifying the difference in the model's output distributions when responding to system prompts that either include or omit an emphasis on safety. Then we determine the final next-token predictions by downplaying the over-attention from the model via contrastive decoding. Empirical results indicate that our method has achieved an average reduction of the refusal rate by 20\% while having almost no impact on safety.
PLLaMa: An Open-source Large Language Model for Plant Science
Yang, Xianjun, Gao, Junfeng, Xue, Wenxin, Alexandersson, Erik
Large Language Models (LLMs) have exhibited remarkable capabilities in understanding and interacting with natural language across various sectors. However, their effectiveness is limited in specialized areas requiring high accuracy, such as plant science, due to a lack of specific expertise in these fields. This paper introduces PLLaMa, an open-source language model that evolved from LLaMa-2. It's enhanced with a comprehensive database, comprising more than 1.5 million scholarly articles in plant science. This development significantly enriches PLLaMa with extensive knowledge and proficiency in plant and agricultural sciences. Our initial tests, involving specific datasets related to plants and agriculture, show that PLLaMa substantially improves its understanding of plant science-related topics. Moreover, we have formed an international panel of professionals, including plant scientists, agricultural engineers, and plant breeders. This team plays a crucial role in verifying the accuracy of PLLaMa's responses to various academic inquiries, ensuring its effective and reliable application in the field. To support further research and development, we have made the model's checkpoints and source codes accessible to the scientific community. These resources are available for download at \url{https://github.com/Xianjun-Yang/PLLaMa}.
Quokka: An Open-source Large Language Model ChatBot for Material Science
Yang, Xianjun, Wilson, Stephen D., Petzold, Linda
This paper presents the development of a specialized chatbot for materials science, leveraging the Llama-2 language model, and continuing pre-training on the expansive research articles in the materials science domain from the S2ORC dataset. The methodology involves an initial pretraining phase on over one million domain-specific papers, followed by an instruction-tuning process to refine the chatbot's capabilities. The chatbot is designed to assist researchers, educators, and students by providing instant, context-aware responses to queries in the field of materials science.
ReDi: Efficient Learning-Free Diffusion Inference via Trajectory Retrieval
Zhang, Kexun, Yang, Xianjun, Wang, William Yang, Li, Lei
Diffusion models show promising generation capability for a variety of data. Despite their high generation quality, the inference for diffusion models is still time-consuming due to the numerous sampling iterations required. To accelerate the inference, we propose ReDi, a simple yet learning-free Retrieval-based Diffusion sampling framework. From a precomputed knowledge base, ReDi retrieves a trajectory similar to the partially generated trajectory at an early stage of generation, skips a large portion of intermediate steps, and continues sampling from a later step in the retrieved trajectory. We theoretically prove that the generation performance of ReDi is guaranteed. Our experiments demonstrate that ReDi improves the model inference efficiency by 2x speedup. Furthermore, ReDi is able to generalize well in zero-shot cross-domain image generation such as image stylization.
A Survey on Detection of LLMs-Generated Content
Yang, Xianjun, Pan, Liangming, Zhao, Xuandong, Chen, Haifeng, Petzold, Linda, Wang, William Yang, Cheng, Wei
The burgeoning capabilities of advanced large language models (LLMs) such as ChatGPT have led to an increase in synthetic content generation with implications across a variety of sectors, including media, cybersecurity, public discourse, and education. As such, the ability to detect LLMs-generated content has become of paramount importance. We aim to provide a detailed overview of existing detection strategies and benchmarks, scrutinizing their differences and identifying key challenges and prospects in the field, advocating for more adaptable and robust models to enhance detection accuracy. We also posit the necessity for a multi-faceted approach to defend against various attacks to counter the rapidly advancing capabilities of LLMs. To the best of our knowledge, this work is the first comprehensive survey on the detection in the era of LLMs. We hope it will provide a broad understanding of the current landscape of LLMs-generated content detection, offering a guiding reference for researchers and practitioners striving to uphold the integrity of digital information in an era increasingly dominated by synthetic content. The relevant papers are summarized and will be consistently updated at https://github.com/Xianjun-Yang/Awesome_papers_on_LLMs_detection.git.