Goto

Collaborating Authors

 Yang, Xi


Towards Dynamic Urban Bike Usage Prediction for Station Network Reconfiguration

arXiv.org Artificial Intelligence

Bike sharing has become one of the major choices of transportation for residents in metropolitan cities worldwide. A station-based bike sharing system is usually operated in the way that a user picks up a bike from one station, and drops it off at another. Bike stations are, however, not static, as the bike stations are often reconfigured to accommodate changing demands or city urbanization over time. One of the key operations is to evaluate candidate locations and install new stations to expand the bike sharing station network. Conventional practices have been studied to predict existing station usage, while evaluating new stations is highly challenging due to the lack of the historical bike usage. To fill this gap, in this work we propose a novel and efficient bike station-level prediction algorithm called AtCoR, which can predict the bike usage at both existing and new stations (candidate locations during reconfiguration). In order to address the lack of historical data issues, virtual historical usage of new stations is generated according to their correlations with the surrounding existing stations, for AtCoR model initialization. We have designed novel station-centered heatmaps which characterize for each target station centered at the heatmap the trend that riders travel between it and the station's neighboring regions, enabling the model to capture the learnable features of the bike station network. The captured features are further applied to the prediction of bike usage for new stations. Our extensive experiment study on more than 23 million trips from three major bike sharing systems in US, including New York City, Chicago and Los Angeles, shows that AtCoR outperforms baselines and state-of-art models in prediction of both existing and future stations.


Improved Preterm Prediction Based on Optimized Synthetic Sampling of EHG Signal

arXiv.org Machine Learning

Preterm labor is the leading cause of neonatal morbidity and mortality and has attracted research efforts from many scientific areas. The inter-relationship between uterine contraction and the underlying electrical activities makes uterine electrohysterogram (EHG) a promising direction for preterm detection and prediction. Due the scarcity of EHG signals, especially those of preterm patients, synthetic algorithms are applied to create artificial samples of preterm type in order to remove prediction bias towards term, at the expense of a reduction of the feature effectiveness in machine-learning based automatic preterm detecting. To address such problem, we quantify the effect of synthetic samples (balance coefficient) on features' effectiveness, and form a general performance metric by utilizing multiple feature scores with relevant weights that describe their contributions to class separation. Combined with the activation/inactivation functions that characterizes the effect of the abundance of training samples in term and preterm prediction precision, we obtain an optimal sample balance coefficient that compromise the effect of synthetic samples in removing bias towards the majority and the side-effect of reducing features' importance. Substantial improvement in prediction precision has been achieved through a set of numerical tests on public available TPEHG database, and it verifies the effectiveness of the proposed method.


Identifying Cancer Patients at Risk for Heart Failure Using Machine Learning Methods

arXiv.org Machine Learning

Cardiotoxicity related to cancer therapies has become a serious issue, diminishing cancer treatment outcomes and quality of life. Early detection of cancer patients at risk for cardiotoxicity before cardiotoxic treatments and providing preventive measures are potential solutions to improve cancer patients's quality of life. This study focuses on predicting the development of heart failure in cancer patients after cancer diagnoses using historical electronic health record (EHR) data. We examined four machine learning algorithms using 143,199 cancer patients from the University of Florida Health (UF Health) Integrated Data Repository (IDR). We identified a total number of 1,958 qualified cases and matched them to 15,488 controls by gender, age, race, and major cancer type. Two feature encoding strategies were compared to encode variables as machine learning features. The gradient boosting (GB) based model achieved the best AUC score of 0.9077 (with a sensitivity of 0.8520 and a specificity of 0.8138), outperforming other machine learning methods. We also looked into the subgroup of cancer patients with exposure to chemotherapy drugs and observed a lower specificity score (0.7089). The experimental results show that machine learning methods are able to capture clinical factors that are known to be associated with heart failure and that it is feasible to use machine learning methods to identify cancer patients at risk for cancer therapy-related heart failure.


G-SMOTE: A GMM-based synthetic minority oversampling technique for imbalanced learning

arXiv.org Machine Learning

Imbalanced Learning is an important learning algorithm for the classification models, which have enjoyed much popularity on many applications. Typically, imbalanced learning algorithms can be partitioned into two types, i.e., data level approaches and algorithm level approaches. In this paper, the focus is to develop a robust synthetic minority oversampling technique which falls the umbrella of data level approaches. On one hand, we proposed a method to generate synthetic samples in a high dimensional feature space, instead of a linear sampling space. On the other hand, in the proposed imbalanced learning framework, Gaussian Mixture Model is employed to distinguish the outliers from minority class instances and filter out the synthetic majority class instances. Last and more importantly, an adaptive optimization method is proposed to optimize these parameters in sampling process. By doing so, an effectiveness and efficiency imbalanced learning framework is developed.