Plotting

 Yang, Xi


SODA: A Natural Language Processing Package to Extract Social Determinants of Health for Cancer Studies

arXiv.org Artificial Intelligence

Objective: We aim to develop an open-source natural language processing (NLP) package, SODA (i.e., SOcial DeterminAnts), with pre-trained transformer models to extract social determinants of health (SDoH) for cancer patients, examine the generalizability of SODA to a new disease domain (i.e., opioid use), and evaluate the extraction rate of SDoH using cancer populations. Methods: We identified SDoH categories and attributes and developed an SDoH corpus using clinical notes from a general cancer cohort. We compared four transformer-based NLP models to extract SDoH, examined the generalizability of NLP models to a cohort of patients prescribed with opioids, and explored customization strategies to improve performance. We applied the best NLP model to extract 19 categories of SDoH from the breast (n=7,971), lung (n=11,804), and colorectal cancer (n=6,240) cohorts. Results and Conclusion: We developed a corpus of 629 cancer patients notes with annotations of 13,193 SDoH concepts/attributes from 19 categories of SDoH. The Bidirectional Encoder Representations from Transformers (BERT) model achieved the best strict/lenient F1 scores of 0.9216 and 0.9441 for SDoH concept extraction, 0.9617 and 0.9626 for linking attributes to SDoH concepts. Fine-tuning the NLP models using new annotations from opioid use patients improved the strict/lenient F1 scores from 0.8172/0.8502 to 0.8312/0.8679. The extraction rates among 19 categories of SDoH varied greatly, where 10 SDoH could be extracted from >70% of cancer patients, but 9 SDoH had a low extraction rate (<70% of cancer patients). The SODA package with pre-trained transformer models is publicly available at https://github.com/uf-hobiinformatics-lab/SDoH_SODA.


An Offline Time-aware Apprenticeship Learning Framework for Evolving Reward Functions

arXiv.org Artificial Intelligence

Apprenticeship learning (AL) is a process of inducing effective decision-making policies via observing and imitating experts' demonstrations. Most existing AL approaches, however, are not designed to cope with the evolving reward functions commonly found in human-centric tasks such as healthcare, where offline learning is required. In this paper, we propose an offline Time-aware Hierarchical EM Energy-based Sub-trajectory (THEMES) AL framework to tackle the evolving reward functions in such tasks. The effectiveness of THEMES is evaluated via a challenging task -- sepsis treatment. The experimental results demonstrate that THEMES can significantly outperform competitive state-of-the-art baselines.


Watermarking Text Generated by Black-Box Language Models

arXiv.org Artificial Intelligence

LLMs now exhibit human-like skills in various fields, leading to worries about misuse. Thus, detecting generated text is crucial. However, passive detection methods are stuck in domain specificity and limited adversarial robustness. To achieve reliable detection, a watermark-based method was proposed for white-box LLMs, allowing them to embed watermarks during text generation. The method involves randomly dividing the model vocabulary to obtain a special list and adjusting the probability distribution to promote the selection of words in the list. A detection algorithm aware of the list can identify the watermarked text. However, this method is not applicable in many real-world scenarios where only black-box language models are available. For instance, third-parties that develop API-based vertical applications cannot watermark text themselves because API providers only supply generated text and withhold probability distributions to shield their commercial interests. To allow third-parties to autonomously inject watermarks into generated text, we develop a watermarking framework for black-box language model usage scenarios. Specifically, we first define a binary encoding function to compute a random binary encoding corresponding to a word. The encodings computed for non-watermarked text conform to a Bernoulli distribution, wherein the probability of a word representing bit-1 being approximately 0.5. To inject a watermark, we alter the distribution by selectively replacing words representing bit-0 with context-based synonyms that represent bit-1. A statistical test is then used to identify the watermark. Experiments demonstrate the effectiveness of our method on both Chinese and English datasets. Furthermore, results under re-translation, polishing, word deletion, and synonym substitution attacks reveal that it is arduous to remove the watermark without compromising the original semantics.


Mixing Backward- with Forward-Chaining for Metacognitive Skill Acquisition and Transfer

arXiv.org Artificial Intelligence

Metacognitive skills have been commonly associated with preparation for future learning in deductive domains. Many researchers have regarded strategy- and time-awareness as two metacognitive skills that address how and when to use a problem-solving strategy, respectively. It was shown that students who are both strategy-and time-aware (StrTime) outperformed their nonStrTime peers across deductive domains. In this work, students were trained on a logic tutor that supports a default forward-chaining (FC) and a backward-chaining (BC) strategy. We investigated the impact of mixing BC with FC on teaching strategy- and time-awareness for nonStrTime students. During the logic instruction, the experimental students (Exp) were provided with two BC worked examples and some problems in BC to practice how and when to use BC. Meanwhile, their control (Ctrl) and StrTime peers received no such intervention. Six weeks later, all students went through a probability tutor that only supports BC to evaluate whether the acquired metacognitive skills are transferred from logic. Our results show that on both tutors, Exp outperformed Ctrl and caught up with StrTime.


Clinical Concept and Relation Extraction Using Prompt-based Machine Reading Comprehension

arXiv.org Artificial Intelligence

Objective: To develop a natural language processing system that solves both clinical concept extraction and relation extraction in a unified prompt-based machine reading comprehension (MRC) architecture with good generalizability for cross-institution applications. Methods: We formulate both clinical concept extraction and relation extraction using a unified prompt-based MRC architecture and explore state-of-the-art transformer models. We compare our MRC models with existing deep learning models for concept extraction and end-to-end relation extraction using two benchmark datasets developed by the 2018 National NLP Clinical Challenges (n2c2) challenge (medications and adverse drug events) and the 2022 n2c2 challenge (relations of social determinants of health [SDoH]). We also evaluate the transfer learning ability of the proposed MRC models in a cross-institution setting. We perform error analyses and examine how different prompting strategies affect the performance of MRC models. Results and Conclusion: The proposed MRC models achieve state-of-the-art performance for clinical concept and relation extraction on the two benchmark datasets, outperforming previous non-MRC transformer models. GatorTron-MRC achieves the best strict and lenient F1-scores for concept extraction, outperforming previous deep learning models on the two datasets by 1%~3% and 0.7%~1.3%, respectively. For end-to-end relation extraction, GatorTron-MRC and BERT-MIMIC-MRC achieve the best F1-scores, outperforming previous deep learning models by 0.9%~2.4% and 10%-11%, respectively. For cross-institution evaluation, GatorTron-MRC outperforms traditional GatorTron by 6.4% and 16% for the two datasets, respectively. The proposed method is better at handling nested/overlapped concepts, extracting relations, and has good portability for cross-institute applications.


Contextualized Medication Information Extraction Using Transformer-based Deep Learning Architectures

arXiv.org Artificial Intelligence

Objective: To develop a natural language processing (NLP) system to extract medications and contextual information that help understand drug changes. This project is part of the 2022 n2c2 challenge. Materials and methods: We developed NLP systems for medication mention extraction, event classification (indicating medication changes discussed or not), and context classification to classify medication changes context into 5 orthogonal dimensions related to drug changes. We explored 6 state-of-the-art pretrained transformer models for the three subtasks, including GatorTron, a large language model pretrained using >90 billion words of text (including >80 billion words from >290 million clinical notes identified at the University of Florida Health). We evaluated our NLP systems using annotated data and evaluation scripts provided by the 2022 n2c2 organizers. Results:Our GatorTron models achieved the best F1-scores of 0.9828 for medication extraction (ranked 3rd), 0.9379 for event classification (ranked 2nd), and the best micro-average accuracy of 0.9126 for context classification. GatorTron outperformed existing transformer models pretrained using smaller general English text and clinical text corpora, indicating the advantage of large language models. Conclusion: This study demonstrated the advantage of using large transformer models for contextual medication information extraction from clinical narratives.


Efficient Human-in-the-loop System for Guiding DNNs Attention

arXiv.org Artificial Intelligence

Attention guidance is an approach to addressing dataset bias in deep learning, where the model relies on incorrect features to make decisions. Focusing on image classification tasks, we propose an efficient human-in-the-loop system to interactively direct the attention of classifiers to the regions specified by users, thereby reducing the influence of co-occurrence bias and improving the transferability and interpretability of a DNN. Previous approaches for attention guidance require the preparation of pixel-level annotations and are not designed as interactive systems. We present a new interactive method to allow users to annotate images with simple clicks, and study a novel active learning strategy to significantly reduce the number of annotations. We conducted both a numerical evaluation and a user study to evaluate the proposed system on multiple datasets. Compared to the existing non-active-learning approach which usually relies on huge amounts of polygon-based segmentation masks to fine-tune or train the DNNs, our system can save lots of labor and money and obtain a fine-tuned network that works better even when the dataset is biased. The experiment results indicate that the proposed system is efficient, reasonable, and reliable.


GatorTron: A Large Clinical Language Model to Unlock Patient Information from Unstructured Electronic Health Records

arXiv.org Artificial Intelligence

There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model - GatorTron - using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve 5 clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og.


SpaceEditing: Integrating Human Knowledge into Deep Neural Networks via Interactive Latent Space Editing

arXiv.org Artificial Intelligence

We propose an interactive editing method that allows humans to help deep neural networks (DNNs) learn a latent space more consistent with human knowledge, thereby improving classification accuracy on indistinguishable ambiguous data. Firstly, we visualize high-dimensional data features through dimensionality reduction methods and design an interactive system \textit{SpaceEditing} to display the visualized data. \textit{SpaceEditing} provides a 2D workspace based on the idea of spatial layout. In this workspace, the user can move the projection data in it according to the system guidance. Then, \textit{SpaceEditing} will find the corresponding high-dimensional features according to the projection data moved by the user, and feed the high-dimensional features back to the network for retraining, therefore achieving the purpose of interactively modifying the high-dimensional latent space for the user. Secondly, to more rationally incorporate human knowledge into the training process of neural networks, we design a new loss function that enables the network to learn user-modified information. Finally, We demonstrate how \textit{SpaceEditing} meets user needs through three case studies while evaluating our proposed new method, and the results confirm the effectiveness of our method.


Visual High Dimensional Hypothesis Testing

arXiv.org Machine Learning

In exploratory data analysis of known classes of high dimensional data, a central question is how distinct are the classes? The Direction Projection Permutation (DiProPerm) hypothesis test provides an answer to this that is directly connected to a visual analysis of the data. In this paper, we propose an improved DiProPerm test that solves 3 major challenges of the original version. First, we implement only balanced permutations to increase the test power for data with strong signals. Second, our mathematical analysis leads to an adjustment to correct the null behavior of both balanced and the conventional all permutations. Third, new confidence intervals (reflecting permutation variation) for test significance are also proposed for comparison of results across different contexts. This improvement of DiProPerm inference is illustrated in the context of comparing cancer types in examples from The Cancer Genome Atlas.