Goto

Collaborating Authors

 Yang, Min


CPsyExam: A Chinese Benchmark for Evaluating Psychology using Examinations

arXiv.org Artificial Intelligence

In this paper, we introduce a novel psychological benchmark, CPsyExam, constructed from questions sourced from Chinese language examinations. CPsyExam is designed to prioritize psychological knowledge and case analysis separately, recognizing the significance of applying psychological knowledge to real-world scenarios. From the pool of 22k questions, we utilize 4k to create the benchmark that offers balanced coverage of subjects and incorporates a diverse range of case analysis techniques.Furthermore, we evaluate a range of existing large language models~(LLMs), spanning from open-sourced to API-based models. Our experiments and analysis demonstrate that CPsyExam serves as an effective benchmark for enhancing the understanding of psychology within LLMs and enables the comparison of LLMs across various granularities.


Navigate Beyond Shortcuts: Debiased Learning through the Lens of Neural Collapse

arXiv.org Artificial Intelligence

Recent studies have noted an intriguing phenomenon termed Neural Collapse, that is, when the neural networks establish the right correlation between feature spaces and the training targets, their last-layer features, together with the classifier weights, will collapse into a stable and symmetric structure. In this paper, we extend the investigation of Neural Collapse to the biased datasets with imbalanced attributes. We observe that models will easily fall into the pitfall of shortcut learning and form a biased, non-collapsed feature space at the early period of training, which is hard to reverse and limits the generalization capability. To tackle the root cause of biased classification, we follow the recent inspiration of prime training, and propose an avoid-shortcut learning framework without additional training complexity. With well-designed shortcut primes based on Neural Collapse structure, the models are encouraged to skip the pursuit of simple shortcuts and naturally capture the intrinsic correlations. Experimental results demonstrate that our method induces better convergence properties during training, and achieves state-of-the-art generalization performance on both synthetic and real-world biased datasets.


Open-SQL Framework: Enhancing Text-to-SQL on Open-source Large Language Models

arXiv.org Artificial Intelligence

Despite the success of large language models (LLMs) in Text-to-SQL tasks, open-source LLMs encounter challenges in contextual understanding and response coherence. To tackle these issues, we present \ours, a systematic methodology tailored for Text-to-SQL with open-source LLMs. Our contributions include a comprehensive evaluation of open-source LLMs in Text-to-SQL tasks, the \openprompt strategy for effective question representation, and novel strategies for supervised fine-tuning. We explore the benefits of Chain-of-Thought in step-by-step inference and propose the \openexample method for enhanced few-shot learning. Additionally, we introduce token-efficient techniques, such as \textbf{Variable-length Open DB Schema}, \textbf{Target Column Truncation}, and \textbf{Example Column Truncation}, addressing challenges in large-scale databases. Our findings emphasize the need for further investigation into the impact of supervised fine-tuning on contextual learning capabilities. Remarkably, our method significantly improved Llama2-7B from 2.54\% to 41.04\% and Code Llama-7B from 14.54\% to 48.24\% on the BIRD-Dev dataset. Notably, the performance of Code Llama-7B surpassed GPT-4 (46.35\%) on the BIRD-Dev dataset.


CLHA: A Simple yet Effective Contrastive Learning Framework for Human Alignment

arXiv.org Artificial Intelligence

Reinforcement learning from human feedback (RLHF) is a crucial technique in aligning large language models (LLMs) with human preferences, ensuring these LLMs behave in beneficial and comprehensible ways to users. However, a longstanding challenge in human alignment techniques based on reinforcement learning lies in their inherent complexity and difficulty in training. To address this challenge, we present a simple yet effective Contrastive Learning Framework for Human Alignment (CLHA) to align LLMs with human preferences directly. CLHA employs a novel rescoring strategy to evaluate the noise within the data by considering its inherent quality and dynamically adjusting the training process. Simultaneously, CLHA utilizes pairwise contrastive loss and adaptive supervised fine-tuning loss to adaptively modify the likelihood of generating responses, ensuring enhanced alignment with human preferences. Using advanced methods, CLHA surpasses other algorithms, showcasing superior performance in terms of reward model scores, automatic evaluations, and human assessments on the widely used "Helpful and Harmless" dataset. For reproducibility, we release our code and data at: https://github.com/calubkk/CLHA.


COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning

arXiv.org Artificial Intelligence

Recently, there have been significant advancements in large language models (LLMs), particularly focused on the English language. These advancements have enabled these LLMs to understand and execute complex instructions with unprecedented accuracy and fluency. However, despite these advancements, there remains a noticeable gap in the development of Chinese instruction tuning. The unique linguistic features and cultural depth of the Chinese language pose challenges for instruction tuning tasks. Existing datasets are either derived from English-centric LLMs or are ill-suited for aligning with the interaction patterns of real-world Chinese users. To bridge this gap, we introduce COIG-CQIA, a high-quality Chinese instruction tuning dataset. Our aim is to build a diverse, wide-ranging instruction-tuning dataset to better align model behavior with human interactions. To this end, we collect a high-quality human-written corpus from various sources on the Chinese Internet, including Q&A communities, Wikis, examinations, and existing NLP datasets. This corpus was rigorously filtered and carefully processed to form the COIG-CQIA dataset. Furthermore, we train models of various scales on different subsets of CQIA, following in-depth evaluation and analyses. The findings from our experiments offer valuable insights for selecting and developing Chinese instruction-tuning datasets. We also find that models trained on CQIA-Subset achieve competitive results in human assessment as well as knowledge and security benchmarks. Data are available at https://huggingface.co/datasets/m-a-p/COIG-CQIA


A Challenge Dataset and Effective Models for Conversational Stance Detection

arXiv.org Artificial Intelligence

Previous stance detection studies typically concentrate on evaluating stances within individual instances, thereby exhibiting limitations in effectively modeling multi-party discussions concerning the same specific topic, as naturally transpire in authentic social media interactions. This constraint arises primarily due to the scarcity of datasets that authentically replicate real social media contexts, hindering the research progress of conversational stance detection. In this paper, we introduce a new multi-turn conversation stance detection dataset (called \textbf{MT-CSD}), which encompasses multiple targets for conversational stance detection. To derive stances from this challenging dataset, we propose a global-local attention network (\textbf{GLAN}) to address both long and short-range dependencies inherent in conversational data. Notably, even state-of-the-art stance detection methods, exemplified by GLAN, exhibit an accuracy of only 50.47\%, highlighting the persistent challenges in conversational stance detection. Furthermore, our MT-CSD dataset serves as a valuable resource to catalyze advancements in cross-domain stance detection, where a classifier is adapted from a different yet related target. We believe that MT-CSD will contribute to advancing real-world applications of stance detection research. Our source code, data, and models are available at \url{https://github.com/nfq729/MT-CSD}.


QuantumLeak: Stealing Quantum Neural Networks from Cloud-based NISQ Machines

arXiv.org Artificial Intelligence

Variational quantum circuits (VQCs) have become a powerful tool for implementing Quantum Neural Networks (QNNs), addressing a wide range of complex problems. Well-trained VQCs serve as valuable intellectual assets hosted on cloud-based Noisy Intermediate Scale Quantum (NISQ) computers, making them susceptible to malicious VQC stealing attacks. However, traditional model extraction techniques designed for classical machine learning models encounter challenges when applied to NISQ computers due to significant noise in current devices. In this paper, we introduce QuantumLeak, an effective and accurate QNN model extraction technique from cloud-based NISQ machines. Compared to existing classical model stealing techniques, QuantumLeak improves local VQC accuracy by 4.99\%$\sim$7.35\% across diverse datasets and VQC architectures.


MoZIP: A Multilingual Benchmark to Evaluate Large Language Models in Intellectual Property

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated impressive performance in various natural language processing (NLP) tasks. However, there is limited understanding of how well LLMs perform in specific domains (e.g, the intellectual property (IP) domain). In this paper, we contribute a new benchmark, the first Multilingual-oriented quiZ on Intellectual Property (MoZIP), for the evaluation of LLMs in the IP domain. The MoZIP benchmark includes three challenging tasks: IP multiple-choice quiz (IPQuiz), IP question answering (IPQA), and patent matching (PatentMatch). In addition, we also develop a new IP-oriented multilingual large language model (called MoZi), which is a BLOOMZ-based model that has been supervised fine-tuned with multilingual IP-related text data. We evaluate our proposed MoZi model and four well-known LLMs (i.e., BLOOMZ, BELLE, ChatGLM and ChatGPT) on the MoZIP benchmark. Experimental results demonstrate that MoZi outperforms BLOOMZ, BELLE and ChatGLM by a noticeable margin, while it had lower scores compared with ChatGPT. Notably, the performance of current LLMs on the MoZIP benchmark has much room for improvement, and even the most powerful ChatGPT does not reach the passing level.


Layer-wise Regularized Dropout for Neural Language Models

arXiv.org Artificial Intelligence

Among the various pre-trained neural language models that are popular today, dropout is already an indispensable regularization technique. To solve the inconsistency between training and inference caused by the randomness of dropout, some studies use consistency training to regularize dropout at the output layer. In this paper, we propose a novel Layer-wise Regularized Dropout (LR-Drop), which is specially designed for Transformer-based Language models. Specifically, LR-Drop layer-wise regularizes each Transformer layer using the consistency training strategy. Each training sample passes through the two siamese sub-models sampled by dropout, and then LR-Drop forces the hidden states, multi-head attention matrices, and output distribution of the two siamese sub-models to be consistent. The proposed LR-Drop can be regarded as a "self-distillation" framework, in which each sub-model generated by dropout is the other's "teacher" model and "student" model. Through extensive experiments on 8 natural language understanding datasets, 6 neural machine translation datasets, and 1 abstractive summarization dataset (a total of 15 datasets), we show that LR-Drop achieves superior performances, including state-of-the-art results.


Forgetting before Learning: Utilizing Parametric Arithmetic for Knowledge Updating in Large Language Models

arXiv.org Artificial Intelligence

Recent advancements in Large Language Models (LLMs) have showcased their remarkable capabilities in text understanding and generation. However, even stronger LLMs are susceptible to acquiring erroneous or obsolete information from the training corpus. Direct secondary fine-tuning with data containing new knowledge may be ineffective in updating knowledge due to the conflict between old and new knowledge. In this paper, we propose a new paradigm for fine-tuning called F-Learning (Forgetting before Learning), which employs parametric arithmetic to facilitate the forgetting of old knowledge and learning of new knowledge. Experimental results on two publicly available datasets demonstrate that our proposed F-Learning can obviously improve the knowledge updating performance of both full fine-tuning and LoRA fine-tuning, simultaneously outperforming the existing baselines in most cases. Moreover, we have also discovered that forgetting old knowledge by subtracting the parameters of LoRA can yield a similar effect to subtracting the parameters of full fine-tuning, and occasionally even surpass it significantly.