Plotting

 Yang, Min


Large Language Models are Versatile Decomposers: Decompose Evidence and Questions for Table-based Reasoning

arXiv.org Artificial Intelligence

Table-based reasoning has shown remarkable progress in combining deep models with discrete reasoning, which requires reasoning over both free-form natural language (NL) questions and structured tabular data. However, previous table-based reasoning solutions usually suffer from significant performance degradation on huge evidence (tables). In addition, most existing methods struggle to reason over complex questions since the required information is scattered in different places. To alleviate the above challenges, we exploit large language models (LLMs) as decomposers for effective table-based reasoning, which (i) decompose huge evidence (a huge table) into sub-evidence (a small table) to mitigate the interference of useless information for table reasoning; and (ii) decompose complex questions into simpler sub-questions for text reasoning. Specifically, we first use the LLMs to break down the evidence (tables) involved in the current question, retaining the relevant evidence and excluding the remaining irrelevant evidence from the huge table. In addition, we propose a "parsing-execution-filling" strategy to alleviate the hallucination dilemma of the chain of thought by decoupling logic and numerical computation in each step. Extensive experiments show that our method can effectively leverage decomposed evidence and questions and outperforms the strong baselines on TabFact, WikiTableQuestion, and FetaQA datasets. Notably, our model outperforms human performance for the first time on the TabFact dataset.


Partially Observable Mean Field Multi-Agent Reinforcement Learning Based on Graph-Attention

arXiv.org Artificial Intelligence

Traditional multi-agent reinforcement learning algorithms are difficultly applied in a large-scale multi-agent environment. The introduction of mean field theory has enhanced the scalability of multi-agent reinforcement learning in recent years. This paper considers partially observable multi-agent reinforcement learning (MARL), where each agent can only observe other agents within a fixed range. This partial observability affects the agent's ability to assess the quality of the actions of surrounding agents. This paper focuses on developing a method to capture more effective information from local observations in order to select more effective actions. Previous work in this field employs probability distributions or weighted mean field to update the average actions of neighborhood agents, but it does not fully consider the feature information of surrounding neighbors and leads to a local optimum. In this paper, we propose a novel multi-agent reinforcement learning algorithm, Partially Observable Mean Field Multi-Agent Reinforcement Learning based on Graph--Attention (GAMFQ) to remedy this flaw. GAMFQ uses a graph attention module and a mean field module to describe how an agent is influenced by the actions of other agents at each time step. This graph attention module consists of a graph attention encoder and a differentiable attention mechanism, and this mechanism outputs a dynamic graph to represent the effectiveness of neighborhood agents against central agents. The mean--field module approximates the effect of a neighborhood agent on a central agent as the average effect of effective neighborhood agents. We evaluate GAMFQ on three challenging tasks in the MAgents framework. Experiments show that GAMFQ outperforms baselines including the state-of-the-art partially observable mean-field reinforcement learning algorithms.


Effective Open Intent Classification with K-center Contrastive Learning and Adjustable Decision Boundary

arXiv.org Artificial Intelligence

Open intent classification, which aims to correctly classify the known intents into their corresponding classes while identifying the new unknown (open) intents, is an essential but challenging task in dialogue systems. In this paper, we introduce novel K-center contrastive learning and adjustable decision boundary learning (CLAB) to improve the effectiveness of open intent classification. First, we pre-train a feature encoder on the labeled training instances, which transfers knowledge from known intents to unknown intents. Specifically, we devise a K-center contrastive learning algorithm to learn discriminative and balanced intent features, improving the generalization of the model for recognizing open intents. Second, we devise an adjustable decision boundary learning method with expanding and shrinking (ADBES) to determine the suitable decision conditions. Concretely, we learn a decision boundary for each known intent class, which consists of a decision center and the radius of the decision boundary. We then expand the radius of the decision boundary to accommodate more in-class instances if the out-of-class instances are far from the decision boundary; otherwise, we shrink the radius of the decision boundary. Extensive experiments on three benchmark datasets clearly demonstrate the effectiveness of our method for open intent classification. For reproducibility, we submit the code at: https://github.com/lxk00/CLAP


Missingness Augmentation: A General Approach for Improving Generative Imputation Models

arXiv.org Artificial Intelligence

Missing data imputation is a fundamental problem in data analysis, and many studies have been conducted to improve its performance by exploring model structures and learning procedures. However, data augmentation, as a simple yet effective method, has not received enough attention in this area. In this paper, we propose a novel data augmentation method called Missingness Augmentation (MisA) for generative imputation models. Our approach dynamically produces incomplete samples at each epoch by utilizing the generator's output, constraining the augmented samples using a simple reconstruction loss, and combining this loss with the original loss to form the final optimization objective. As a general augmentation technique, MisA can be easily integrated into generative imputation frameworks, providing a simple yet effective way to enhance their performance. Experimental results demonstrate that MisA significantly improves the performance of many recently proposed generative imputation models on a variety of tabular and image datasets. The code is available at \url{https://github.com/WYu-Feng/Missingness-Augmentation}.


Less Emphasis on Difficult Layer Regions: Curriculum Learning for Singularly Perturbed Convection-Diffusion-Reaction Problems

arXiv.org Artificial Intelligence

Although Physics-Informed Neural Networks (PINNs) have been successfully applied in a wide variety of science and engineering fields, they can fail to accurately predict the underlying solution in slightly challenging convection-diffusion-reaction problems. In this paper, we investigate the reason of this failure from a domain distribution perspective, and identify that learning multi-scale fields simultaneously makes the network unable to advance its training and easily get stuck in poor local minima. We show that the widespread experience of sampling more collocation points in high-loss layer regions hardly help optimize and may even worsen the results. These findings motivate the development of a novel curriculum learning method that encourages neural networks to prioritize learning on easier non-layer regions while downplaying learning on harder layer regions. The proposed method helps PINNs automatically adjust the learning emphasis and thereby facilitate the optimization procedure. Numerical results on typical benchmark equations show that the proposed curriculum learning approach mitigates the failure modes of PINNs and can produce accurate results for very sharp boundary and interior layers. Our work reveals that for equations whose solutions have large scale differences, paying less attention to high-loss regions can be an effective strategy for learning them accurately.


Exorcising ''Wraith'': Protecting LiDAR-based Object Detector in Automated Driving System from Appearing Attacks

arXiv.org Artificial Intelligence

Automated driving systems rely on 3D object detectors to recognize possible obstacles from LiDAR point clouds. However, recent works show the adversary can forge non-existent cars in the prediction results with a few fake points (i.e., appearing attack). By removing statistical outliers, existing defenses are however designed for specific attacks or biased by predefined heuristic rules. Towards more comprehensive mitigation, we first systematically inspect the mechanism of recent appearing attacks: Their common weaknesses are observed in crafting fake obstacles which (i) have obvious differences in the local parts compared with real obstacles and (ii) violate the physical relation between depth and point density. In this paper, we propose a novel plug-and-play defensive module which works by side of a trained LiDAR-based object detector to eliminate forged obstacles where a major proportion of local parts have low objectness, i.e., to what degree it belongs to a real object. At the core of our module is a local objectness predictor, which explicitly incorporates the depth information to model the relation between depth and point density, and predicts each local part of an obstacle with an objectness score. Extensive experiments show, our proposed defense eliminates at least 70% cars forged by three known appearing attacks in most cases, while, for the best previous defense, less than 30% forged cars are eliminated. Meanwhile, under the same circumstance, our defense incurs less overhead for AP/precision on cars compared with existing defenses. Furthermore, We validate the effectiveness of our proposed defense on simulation-based closed-loop control driving tests in the open-source system of Baidu's Apollo.


Rethinking White-Box Watermarks on Deep Learning Models under Neural Structural Obfuscation

arXiv.org Artificial Intelligence

Copyright protection for deep neural networks (DNNs) is an urgent need for AI corporations. To trace illegally distributed model copies, DNN watermarking is an emerging technique for embedding and verifying secret identity messages in the prediction behaviors or the model internals. Sacrificing less functionality and involving more knowledge about the target DNN, the latter branch called \textit{white-box DNN watermarking} is believed to be accurate, credible and secure against most known watermark removal attacks, with emerging research efforts in both the academy and the industry. In this paper, we present the first systematic study on how the mainstream white-box DNN watermarks are commonly vulnerable to neural structural obfuscation with \textit{dummy neurons}, a group of neurons which can be added to a target model but leave the model behavior invariant. Devising a comprehensive framework to automatically generate and inject dummy neurons with high stealthiness, our novel attack intensively modifies the architecture of the target model to inhibit the success of watermark verification. With extensive evaluation, our work for the first time shows that nine published watermarking schemes require amendments to their verification procedures.


A Generative Approach for Script Event Prediction via Contrastive Fine-tuning

arXiv.org Artificial Intelligence

Script event prediction aims to predict the subsequent event given the context. This requires the capability to infer the correlations between events. Recent works have attempted to improve event correlation reasoning by using pretrained language models and incorporating external knowledge~(e.g., discourse relations). Though promising results have been achieved, some challenges still remain. First, the pretrained language models adopted by current works ignore event-level knowledge, resulting in an inability to capture the correlations between events well. Second, modeling correlations between events with discourse relations is limited because it can only capture explicit correlations between events with discourse markers, and cannot capture many implicit correlations. To this end, we propose a novel generative approach for this task, in which a pretrained language model is fine-tuned with an event-centric pretraining objective and predicts the next event within a generative paradigm. Specifically, we first introduce a novel event-level blank infilling strategy as the learning objective to inject event-level knowledge into the pretrained language model, and then design a likelihood-based contrastive loss for fine-tuning the generative model. Instead of using an additional prediction layer, we perform prediction by using sequence likelihoods generated by the generative model. Our approach models correlations between events in a soft way without any external knowledge. The likelihood-based prediction eliminates the need to use additional networks to make predictions and is somewhat interpretable since it scores each word in the event. Experimental results on the multi-choice narrative cloze~(MCNC) task demonstrate that our approach achieves better results than other state-of-the-art baselines. Our code will be available at https://github.com/zhufq00/mcnc.


SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers

arXiv.org Artificial Intelligence

This paper aims to improve the performance of text-to-SQL parsing by exploring the intrinsic uncertainties in the neural network based approaches (called SUN). From the data uncertainty perspective, it is indisputable that a single SQL can be learned from multiple semantically-equivalent questions.Different from previous methods that are limited to one-to-one mapping, we propose a data uncertainty constraint to explore the underlying complementary semantic information among multiple semantically-equivalent questions (many-to-one) and learn the robust feature representations with reduced spurious associations. In this way, we can reduce the sensitivity of the learned representations and improve the robustness of the parser. From the model uncertainty perspective, there is often structural information (dependence) among the weights of neural networks. To improve the generalizability and stability of neural text-to-SQL parsers, we propose a model uncertainty constraint to refine the query representations by enforcing the output representations of different perturbed encoding networks to be consistent with each other. Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms strong competitors and achieves new state-of-the-art results. For reproducibility, we release our code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/sunsql.


A Certifiable Security Patch for Object Tracking in Self-Driving Systems via Historical Deviation Modeling

arXiv.org Machine Learning

Self-driving cars (SDC) commonly implement the perception pipeline to detect the surrounding obstacles and track their moving trajectories, which lays the ground for the subsequent driving decision making process. Although the security of obstacle detection in SDC is intensively studied, not until very recently the attackers start to exploit the vulnerability of the tracking module. Compared with solely attacking the object detectors, this new attack strategy influences the driving decision more effectively with less attack budgets. However, little is known on whether the revealed vulnerability remains effective in end-to-end self-driving systems and, if so, how to mitigate the threat. In this paper, we present the first systematic research on the security of object tracking in SDC. Through a comprehensive case study on the full perception pipeline of a popular open-sourced self-driving system, Baidu's Apollo, we prove the mainstream multi-object tracker (MOT) based on Kalman Filter (KF) is unsafe even with an enabled multi-sensor fusion mechanism. Our root cause analysis reveals, the vulnerability is innate to the design of KF-based MOT, which shall error-handle the prediction results from the object detectors yet the adopted KF algorithm is prone to trust the observation more when its deviation from the prediction is larger. To address this design flaw, we propose a simple yet effective security patch for KF-based MOT, the core of which is an adaptive strategy to balance the focus of KF on observations and predictions according to the anomaly index of the observation-prediction deviation, and has certified effectiveness against a generalized hijacking attack model. Extensive evaluation on $4$ KF-based existing MOT implementations (including 2D and 3D, academic and Apollo ones) validate the defense effectiveness and the trivial performance overhead of our approach.