Yang, Lin
Asymmetric Discrete Graph Hashing
Shi, Xiaoshuang (University of Florida) | Xing, Fuyong (University of Florida) | Xu, Kaidi (University of Florida) | Sapkota, Manish (University of Florida) | Yang, Lin (University of Florida)
Recently, many graph based hashing methods have been emerged to tackle large-scale problems. However, there exists two major bottlenecks: (1) directly learning discrete hashing codes is an NP-hardoptimization problem; (2) the complexity of both storage and computational time to build a graph with n data points is O ( n 2 ). To address these two problems, in this paper, we propose a novel yetsimple supervised graph based hashing method, asymmetric discrete graph hashing, by preserving the asymmetric discrete constraint and building an asymmetric affinity matrix to learn compact binary codes.Specifically, we utilize two different instead of identical discrete matrices to better preserve the similarity of the graph with short binary codes. We generate the asymmetric affinity matrix using m ( m << n ) selected anchors to approximate the similarity among all training data so that computational time and storage requirement can be significantly improved. In addition, the proposed method jointly learns discrete binary codes and a low-dimensional projection matrix to further improve the retrieval accuracy. Extensive experiments on three benchmark large-scale databases demonstrate its superior performance over the recent state of the arts with lower training time costs.
Combining Fully Convolutional and Recurrent Neural Networks for 3D Biomedical Image Segmentation
Chen, Jianxu, Yang, Lin, Zhang, Yizhe, Alber, Mark, Chen, Danny Z.
Segmentation of 3D images is a fundamental problem in biomedical image analysis. Deep learning (DL) approaches have achieved the state-of-the-art segmentation performance. To exploit the 3D contexts using neural networks, known DL segmentation methods, including 3D convolution, 2D convolution on the planes orthogonal to 2D slices, and LSTM in multiple directions, all suffer incompatibility with the highly anisotropic dimensions in common 3D biomedical images. In this paper, we propose a new DL framework for 3D image segmentation, based on a combination of a fully convolutional network (FCN) and a recurrent neural network (RNN), which are responsible for exploiting the intra-slice and inter-slice contexts, respectively. To our best knowledge, this is the first DL framework for 3D image segmentation that explicitly leverages 3D image anisotropism. Evaluating using a dataset from the ISBI Neuronal Structure Segmentation Challenge and in-house image stacks for 3D fungus segmentation, our approach achieves promising results, comparing to the known DL-based 3D segmentation approaches.