Goto

Collaborating Authors

 Yang, Junfeng


Symmetry-Preserving Program Representations for Learning Code Semantics

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown promise in automated program reasoning, a crucial aspect of many security tasks. However, existing LLM architectures for code are often borrowed from other domains like natural language processing, raising concerns about their generalization and robustness to unseen code. A key generalization challenge is to incorporate the knowledge of code semantics, including control and data flow, into the LLM architectures. Drawing inspiration from examples of convolution layers exploiting translation symmetry, we explore how code symmetries can enhance LLM architectures for program analysis and modeling. We present a rigorous group-theoretic framework that formally defines code symmetries as semantics-preserving transformations and provides techniques for precisely reasoning about symmetry preservation within LLM architectures. Using this framework, we introduce a novel variant of self-attention that preserves program symmetries, demonstrating its effectiveness in generalization and robustness through detailed experimental evaluations across different binary and source code analysis tasks. Overall, our code symmetry framework offers rigorous and powerful reasoning techniques that can guide the future development of specialized LLMs for code and advance LLM-guided program reasoning tasks.


Monitoring and Adapting ML Models on Mobile Devices

arXiv.org Artificial Intelligence

ML models are increasingly being pushed to mobile devices, for low-latency inference and offline operation. However, once the models are deployed, it is hard for ML operators to track their accuracy, which can degrade unpredictably (e.g., due to data drift). We design the first end-to-end system for continuously monitoring and adapting models on mobile devices without requiring feedback from users. Our key observation is that often model degradation is due to a specific root cause, which may affect a large group of devices. Therefore, once the system detects a consistent degradation across a large number of devices, it employs a root cause analysis to determine the origin of the problem and applies a cause-specific adaptation. We evaluate the system on two computer vision datasets, and show it consistently boosts accuracy compared to existing approaches. On a dataset containing photos collected from driving cars, our system improves the accuracy on average by 15%.


Test-time Detection and Repair of Adversarial Samples via Masked Autoencoder

arXiv.org Artificial Intelligence

Training-time defenses, known as adversarial training, incur high training costs and do not generalize to unseen attacks. Test-time defenses solve these issues but most existing test-time defenses require adapting the model weights, therefore they do not work on frozen models and complicate model memory management. The only test-time defense that does not adapt model weights aims to adapt the input with self-supervision tasks. However, we empirically found these self-supervision tasks are not sensitive enough to detect adversarial attacks accurately. In this paper, we propose DRAM, a novel defense method to detect and repair adversarial samples at test time via Masked autoencoder (MAE). We demonstrate how to use MAE losses to build a Kolmogorov-Smirnov test to detect adversarial samples. Moreover, we use the MAE losses to calculate input reversal vectors that repair adversarial samples resulting from previously unseen attacks. Results on large-scale ImageNet dataset show that, compared to all detection baselines evaluated, DRAM achieves the best detection rate (82% on average) on all eight adversarial attacks evaluated. For attack repair, DRAM improves the robust accuracy by 6% ~ 41% for standard ResNet50 and 3% ~ 8% for robust ResNet50 compared with the baselines that use contrastive learning and rotation prediction.


Packing Privacy Budget Efficiently

arXiv.org Artificial Intelligence

Machine learning (ML) models can leak information about users, and differential privacy (DP) provides a rigorous way to bound that leakage under a given budget. This DP budget can be regarded as a new type of compute resource in workloads of multiple ML models training on user data. Once it is used, the DP budget is forever consumed. Therefore, it is crucial to allocate it most efficiently to train as many models as possible. This paper presents the scheduler for privacy that optimizes for efficiency. We formulate privacy scheduling as a new type of multidimensional knapsack problem, called privacy knapsack, which maximizes DP budget efficiency. We show that privacy knapsack is NP-hard, hence practical algorithms are necessarily approximate. We develop an approximation algorithm for privacy knapsack, DPK, and evaluate it on microbenchmarks and on a new, synthetic private-ML workload we developed from the Alibaba ML cluster trace. We show that DPK: (1) often approaches the efficiency-optimal schedule, (2) consistently schedules more tasks compared to a state-of-the-art privacy scheduling algorithm that focused on fairness (1.3-1.7x in Alibaba, 1.0-2.6x in microbenchmarks), but (3) sacrifices some level of fairness for efficiency. Therefore, using DPK, DP ML operators should be able to train more models on the same amount of user data while offering the same privacy guarantee to their users.


Development of a Neural Network-Based Mathematical Operation Protocol for Embedded Hexadecimal Digits Using Neural Architecture Search (NAS)

arXiv.org Artificial Intelligence

It is beneficial to develop an efficient machine-learning based method for addition using embedded hexadecimal digits. Through a comparison between human-developed machine learning model and models sampled through Neural Architecture Search (NAS) we determine an efficient approach to solve this problem with a final testing loss of 0.2937 for a human-developed model.


Live Trojan Attacks on Deep Neural Networks

arXiv.org Machine Learning

Like all software systems, the execution of deep learning models is dictated in part by logic represented as data in memory. For decades, attackers have exploited traditional software programs by manipulating this data. We propose a live attack on deep learning systems that patches model parameters in memory to achieve predefined malicious behavior on a certain set of inputs. By minimizing the size and number of these patches, the attacker can reduce the amount of network communication and memory overwrites, with minimal risk of system malfunctions or other detectable side effects. We demonstrate the feasibility of this attack by computing efficient patches on multiple deep learning models. We show that the desired trojan behavior can be induced with a few small patches and with limited access to training data. We describe the details of how this attack is carried out on real systems and provide sample code for patching TensorFlow model parameters in Windows and in Linux. Lastly, we present a technique for effectively manipulating entropy on perturbed inputs to bypass STRIP, a state-of-the-art run-time trojan detection technique.


Metric Learning for Adversarial Robustness

Neural Information Processing Systems

Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack causes the internal representation to shift closer to the false'' class. Motivated by this observation, we propose to regularize the representation space under attack with metric learning to produce more robust classifiers. By carefully sampling examples for metric learning, our learned representation not only increases robustness, but also detects previously unseen adversarial samples. Quantitative experiments show improvement of robustness accuracy by up to 4% and detection efficiency by up to 6% according to Area Under Curve score over prior work.


Metric Learning for Adversarial Robustness

arXiv.org Machine Learning

Deep networks are well-known to be fragile to adversarial attacks. Using several standard image datasets and established attack mechanisms, we conduct an empirical analysis of deep representations under attack, and find that the attack causes the internal representation to shift closer to the "false" class. Motivated by this observation, we propose to regularize the representation space under attack with metric learning in order to produce more robust classifiers. By carefully sampling examples for metric learning, our learned representation not only increases robustness, but also can detect previously unseen adversarial samples. Quantitative experiments show improvement of robustness accuracy by up to 4\% and detection efficiency by up to 6\% according to Area Under Curve (AUC) score over baselines.


Efficient Formal Safety Analysis of Neural Networks

Neural Information Processing Systems

Neural networks are increasingly deployed in real-world safety-critical domains such as autonomous driving, aircraft collision avoidance, and malware detection. However, these networks have been shown to often mispredict on inputs with minor adversarial or even accidental perturbations. Consequences of such errors can be disastrous and even potentially fatal as shown by the recent Tesla autopilot crashes. Thus, there is an urgent need for formal analysis systems that can rigorously check neural networks for violations of different safety properties such as robustness against adversarial perturbations within a certain L-norm of a given image. An effective safety analysis system for a neural network must be able to either ensure that a safety property is satisfied by the network or find a counterexample, i.e., an input for which the network will violate the property. Unfortunately, most existing techniques for performing such analysis struggle to scale beyond very small networks and the ones that can scale to larger networks suffer from high false positives and cannot produce concrete counterexamples in case of a property violation. In this paper, we present a new efficient approach for rigorously checking different safety properties of neural networks that significantly outperforms existing approaches by multiple orders of magnitude. Our approach can check different safety properties and find concrete counterexamples for networks that are 10 larger than the ones supported by existing analysis techniques. We believe that our approach to estimating tight output bounds of a network for a given input range can also help improve the explainability of neural networks and guide the training process of more robust neural networks.


Efficient Formal Safety Analysis of Neural Networks

Neural Information Processing Systems

Neural networks are increasingly deployed in real-world safety-critical domains such as autonomous driving, aircraft collision avoidance, and malware detection. However, these networks have been shown to often mispredict on inputs with minor adversarial or even accidental perturbations. Consequences of such errors can be disastrous and even potentially fatal as shown by the recent Tesla autopilot crash. Thus, there is an urgent need for formal analysis systems that can rigorously check neural networks for violations of different safety properties such as robustness against adversarial perturbations within a certain L-norm of a given image. An effective safety analysis system for a neural network must be able to either ensure that a safety property is satisfied by the network or find a counterexample, i.e., an input for which the network will violate the property. Unfortunately, most existing techniques for performing such analysis struggle to scale beyond very small networks and the ones that can scale to larger networks suffer from high false positives and cannot produce concrete counterexamples in case of a property violation. In this paper, we present a new efficient approach for rigorously checking different safety properties of neural networks that significantly outperforms existing approaches by multiple orders of magnitude. Our approach can check different safety properties and find concrete counterexamples for networks that are 10x larger than the ones supported by existing analysis techniques. We believe that our approach to estimating tight output bounds of a network for a given input range can also help improve the explainability of neural networks and guide the training process of more robust neural networks.