Not enough data to create a plot.
Try a different view from the menu above.
Yang, Jing
RFPPO: Motion Dynamic RRT based Fluid Field - PPO for Dynamic TF/TA Routing Planning
Xue, Rongkun, Yang, Jing, Jiang, Yuyang, Feng, Yiming, Yang, Zi
Existing local dynamic route planning algorithms, when directly applied to terrain following/terrain avoidance, or dynamic obstacle avoidance for large and medium-sized fixed-wing aircraft, fail to simultaneously meet the requirements of real-time performance, long-distance planning, and the dynamic constraints of large and medium-sized aircraft. To deal with this issue, this paper proposes the Motion Dynamic RRT based Fluid Field - PPO for dynamic TF/TA routing planning. Firstly, the action and state spaces of the proximal policy gradient algorithm are redesigned using disturbance flow fields and artificial potential field algorithms, establishing an aircraft dynamics model, and designing a state transition process based on this model. Additionally, a reward function is designed to encourage strategies for obstacle avoidance, terrain following, terrain avoidance, and safe flight. Experimental results on real DEM data demonstrate that our algorithm can complete long-distance flight tasks through collision-free trajectory planning that complies with dynamic constraints, without the need for prior global planning.
FedDW: Distilling Weights through Consistency Optimization in Heterogeneous Federated Learning
Liu, Jiayu, Wang, Yong, Wang, Nianbin, Yang, Jing, Tao, Xiaohui
Federated Learning (FL) is an innovative distributed machine learning paradigm that enables neural network training across devices without centralizing data. While this addresses issues of information sharing and data privacy, challenges arise from data heterogeneity across clients and increasing network scale, leading to impacts on model performance and training efficiency. Previous research shows that in IID environments, the parameter structure of the model is expected to adhere to certain specific consistency principles. Thus, identifying and regularizing these consistencies can mitigate issues from heterogeneous data. We found that both soft labels derived from knowledge distillation and the classifier head parameter matrix, when multiplied by their own transpose, capture the intrinsic relationships between data classes. These shared relationships suggest inherent consistency. Therefore, the work in this paper identifies the consistency between the two and leverages it to regulate training, underpinning our proposed FedDW framework. Experimental results show FedDW outperforms 10 state-of-the-art FL methods, improving accuracy by an average of 3% in highly heterogeneous settings. Additionally, we provide a theoretical proof that FedDW offers higher efficiency, with the additional computational load from backpropagation being negligible. The code is available at https://github.com/liuvvvvv1/FedDW.
Revisiting Generative Policies: A Simpler Reinforcement Learning Algorithmic Perspective
Zhang, Jinouwen, Xue, Rongkun, Niu, Yazhe, Chen, Yun, Yang, Jing, Li, Hongsheng, Liu, Yu
Generative models, particularly diffusion models, have achieved remarkable success in density estimation for multimodal data, drawing significant interest from the reinforcement learning (RL) community, especially in policy modeling in continuous action spaces. However, existing works exhibit significant variations in training schemes and RL optimization objectives, and some methods are only applicable to diffusion models. In this study, we compare and analyze various generative policy training and deployment techniques, identifying and validating effective designs for generative policy algorithms. Specifically, we revisit existing training objectives and classify them into two categories, each linked to a simpler approach. The first approach, Generative Model Policy Optimization (GMPO), employs a native advantage-weighted regression formulation as the training objective, which is significantly simpler than previous methods. The second approach, Generative Model Policy Gradient (GMPG), offers a numerically stable implementation of the native policy gradient method. We introduce a standardized experimental framework named GenerativeRL. Our experiments demonstrate that the proposed methods achieve state-of-the-art performance on various offline-RL datasets, offering a unified and practical guideline for training and deploying generative policies.
Pretrained Reversible Generation as Unsupervised Visual Representation Learning
Xue, Rongkun, Zhang, Jinouwen, Niu, Yazhe, Shen, Dazhong, Ma, Bingqi, Liu, Yu, Yang, Jing
Recent generative models based on score matching and flow matching have significantly advanced generation tasks, but their potential in discriminative tasks remains underexplored. Previous approaches, such as generative classifiers, have not fully leveraged the capabilities of these models for discriminative tasks due to their intricate designs. We propose Pretrained Reversible Generation (PRG), which extracts unsupervised representations by reversing the generative process of a pretrained continuous flow model. PRG effectively reuses unsupervised generative models, leveraging their high capacity to serve as robust and generalizable feature extractors for downstream tasks. Our method consistently outperforms prior approaches across multiple benchmarks, achieving state-of-the-art performance among generative model-based methods, including 78\% top-1 accuracy on ImageNet. Extensive ablation studies further validate the effectiveness of our approach.
Decision Feedback In-Context Symbol Detection over Block-Fading Channels
Fan, Li, Yang, Jing, Shen, Cong
Pre-trained Transformers, through in-context learning (ICL), have demonstrated exceptional capabilities to adapt to new tasks using example prompts \textit{without model update}. Transformer-based wireless receivers, where prompts consist of the pilot data in the form of transmitted and received signal pairs, have shown high estimation accuracy when pilot data are abundant. However, pilot information is often costly and limited in practice. In this work, we propose the \underline{DE}cision \underline{F}eedback \underline{IN}-Cont\underline{E}xt \underline{D}etection (DEFINED) solution as a new wireless receiver design, which bypasses channel estimation and directly performs symbol detection using the (sometimes extremely) limited pilot data. The key innovation in DEFINED is the proposed decision feedback mechanism in ICL, where we sequentially incorporate the detected symbols into the prompts to improve the detections for subsequent symbols. Extensive experiments across a broad range of wireless communication settings demonstrate that DEFINED achieves significant performance improvements, in some cases only needing a single pilot pair.
On the Learn-to-Optimize Capabilities of Transformers in In-Context Sparse Recovery
Liu, Renpu, Zhou, Ruida, Shen, Cong, Yang, Jing
An intriguing property of the Transformer is its ability to perform in-context learning (ICL), where the Transformer can solve different inference tasks without parameter updating based on the contextual information provided by the corresponding input-output demonstration pairs. It has been theoretically proved that ICL is enabled by the capability of Transformers to perform gradient-descent algorithms (Von Oswald et al., 2023a; Bai et al., 2024). This work takes a step further and shows that Transformers can perform learning-to-optimize (L2O) algorithms. Specifically, for the ICL sparse recovery (formulated as LASSO) tasks, we show that a K-layer Transformer can perform an L2O algorithm with a provable convergence rate linear in K. This provides a new perspective explaining the superior ICL capability of Transformers, even with only a few layers, which cannot be achieved by the standard gradient-descent algorithms. Moreover, unlike the conventional L2O algorithms that require the measurement matrix involved in training to match that in testing, the trained Transformer is able to solve sparse recovery problems generated with different measurement matrices. Besides, Transformers as an L2O algorithm can leverage structural information embedded in the training tasks to accelerate its convergence during ICL, and generalize across different lengths of demonstration pairs, where conventional L2O algorithms typically struggle or fail. Such theoretical findings are supported by our experimental results.
Data-adaptive Differentially Private Prompt Synthesis for In-Context Learning
Gao, Fengyu, Zhou, Ruida, Wang, Tianhao, Shen, Cong, Yang, Jing
Large Language Models (LLMs) rely on the contextual information embedded in examples/demonstrations to perform in-context learning (ICL). To mitigate the risk of LLMs potentially leaking private information contained in examples in the prompt, we introduce a novel data-adaptive differentially private algorithm called AdaDPSyn to generate synthetic examples from the private dataset and then use these synthetic examples to perform ICL. The objective of AdaDPSyn is to adaptively adjust the noise level in the data synthesis mechanism according to the inherent statistical properties of the data, thereby preserving high ICL accuracy while maintaining formal differential privacy guarantees. A key innovation in AdaDPSyn is the Precision-Focused Iterative Radius Reduction technique, which dynamically refines the aggregation radius - the scope of data grouping for noise addition - based on patterns observed in data clustering, thereby minimizing the amount of additive noise. We conduct extensive experiments on standard benchmarks and compare AdaDPSyn with DP few-shot generation algorithm (Tang et al., 2023). The experiments demonstrate that AdaDPSyn not only outperforms DP few-shot generation, but also maintains high accuracy levels close to those of non-private baselines, providing an effective solution for ICL with privacy protection.
On the Training Convergence of Transformers for In-Context Classification
Shen, Wei, Zhou, Ruida, Yang, Jing, Shen, Cong
While transformers have demonstrated impressive capacities for in-context learning (ICL) in practice, theoretical understanding of the underlying mechanism enabling transformers to perform ICL is still in its infant stage. This work aims to theoretically study the training dynamics of transformers for in-context classification tasks. We demonstrate that, for in-context classification of Gaussian mixtures under certain assumptions, a single-layer transformer trained via gradient descent converges to a globally optimal model at a linear rate. We further quantify the impact of the training and testing prompt lengths on the ICL inference error of the trained transformer. We show that when the lengths of training and testing prompts are sufficiently large, the prediction of the trained transformer approaches the Bayes-optimal classifier. Experimental results corroborate the theoretical findings.
Transformers as Game Players: Provable In-context Game-playing Capabilities of Pre-trained Models
Shi, Chengshuai, Yang, Kun, Yang, Jing, Shen, Cong
The in-context learning (ICL) capability of pre-trained models based on the transformer architecture has received growing interest in recent years. While theoretical understanding has been obtained for ICL in reinforcement learning (RL), the previous results are largely confined to the single-agent setting. This work proposes to further explore the in-context learning capabilities of pre-trained transformer models in competitive multi-agent games, i.e., in-context game-playing (ICGP). Focusing on the classical two-player zero-sum games, theoretical guarantees are provided to demonstrate that pre-trained transformers can provably learn to approximate Nash equilibrium in an in-context manner for both decentralized and centralized learning settings. As a key part of the proof, constructional results are established to demonstrate that the transformer architecture is sufficiently rich to realize celebrated multi-agent game-playing algorithms, in particular, decentralized V-learning and centralized VI-ULCB.
Take It Easy: Label-Adaptive Self-Rationalization for Fact Verification and Explanation Generation
Yang, Jing, Rocha, Anderson
Computational methods to aid journalists in the task often require adapting a model to specific domains and generating explanations. However, most automated fact-checking methods rely on three-class datasets, which do not accurately reflect real-world misinformation. Moreover, fact-checking explanations are often generated based on text summarization of evidence, failing to address the relationship between the claim and the evidence. To address these issues, we extend the self-rationalization method--typically used in natural language inference (NLI) tasks--to fact verification. We propose a label-adaptive learning approach: first, we fine-tune a model to learn veracity prediction with annotated labels (step-1 model). Then, we fine-tune the step-1 model again to learn self-rationalization, using the same data and additional annotated explanations. Our results show that our label-adaptive approach improves veracity prediction by more than ten percentage points (Macro F1) on both the PubHealth and AVeriTec datasets, outperforming the GPT-4 model. Furthermore, to address the high cost of explanation annotation, we generated 64 synthetic explanations from three large language models: GPT-4-turbo, GPT-3.5-turbo, and Llama-3-8B and few-shot fine-tune our step-1 model. The few-shot synthetic explanation fine-tuned model performed comparably to the fully fine-tuned self-rationalization model, demonstrating the potential of low-budget learning with synthetic data. Our label-adaptive self-rationalization approach presents a promising direction for future research on real-world explainable fact-checking with different labeling schemes.