Not enough data to create a plot.
Try a different view from the menu above.
Yang, Jianwei
Object-Centric Diagnosis of Visual Reasoning
Yang, Jianwei, Mao, Jiayuan, Wu, Jiajun, Parikh, Devi, Cox, David D., Tenenbaum, Joshua B., Gan, Chuang
When answering questions about an image, it not only needs knowing what -- understanding the fine-grained contents (e.g., objects, relationships) in the image, but also telling why -- reasoning over grounding visual cues to derive the answer for a question. Over the last few years, we have seen significant progress on visual question answering. Though impressive as the accuracy grows, it still lags behind to get knowing whether these models are undertaking grounding visual reasoning or just leveraging spurious correlations in the training data. Recently, a number of works have attempted to answer this question from perspectives such as grounding and robustness. However, most of them are either focusing on the language side or coarsely studying the pixel-level attention maps. In this paper, by leveraging the step-wise object grounding annotations provided in the GQA dataset, we first present a systematical object-centric diagnosis of visual reasoning on grounding and robustness, particularly on the vision side. According to the extensive comparisons across different models, we find that even models with high accuracy are not good at grounding objects precisely, nor robust to visual content perturbations. In contrast, symbolic and modular models have a relatively better grounding and robustness, though at the cost of accuracy. To reconcile these different aspects, we further develop a diagnostic model, namely Graph Reasoning Machine. Our model replaces purely symbolic visual representation with probabilistic scene graph and then applies teacher-forcing training for the visual reasoning module. The designed model improves the performance on all three metrics over the vanilla neural-symbolic model while inheriting the transparency. Further ablation studies suggest that this improvement is mainly due to more accurate image understanding and proper intermediate reasoning supervisions.
Neuro-Symbolic Representations for Video Captioning: A Case for Leveraging Inductive Biases for Vision and Language
Akbari, Hassan, Palangi, Hamid, Yang, Jianwei, Rao, Sudha, Celikyilmaz, Asli, Fernandez, Roland, Smolensky, Paul, Gao, Jianfeng, Chang, Shih-Fu
Neuro-symbolic representations have proved effective in learning structure information in vision and language. In this paper, we propose a new model architecture for learning multi-modal neuro-symbolic representations for video captioning. Our approach uses a dictionary learning-based method of learning relations between videos and their paired text descriptions. We refer to these relations as relative roles and leverage them to make each token role-aware using attention. This results in a more structured and interpretable architecture that incorporates modality-specific inductive biases for the captioning task. Intuitively, the model is able to learn spatial, temporal, and cross-modal relations in a given pair of video and text. The disentanglement achieved by our proposal gives the model more capacity to capture multi-modal structures which result in captions with higher quality for videos. Our experiments on two established video captioning datasets verifies the effectiveness of the proposed approach based on automatic metrics. We further conduct a human evaluation to measure the grounding and relevance of the generated captions and observe consistent improvement for the proposed model. The codes and trained models can be found at https://github.com/hassanhub/R3Transformer
Hierarchical Question-Image Co-Attention for Visual Question Answering
Lu, Jiasen, Yang, Jianwei, Batra, Dhruv, Parikh, Devi
A number of recent works have proposed attention models for Visual Question Answering (VQA) that generate spatial maps highlighting image regions relevant to answering the question. In this paper, we argue that in addition to modeling "where to look" or visual attention, it is equally important to model "what words to listen to" or question attention. We present a novel co-attention model for VQA that jointly reasons about image and question attention. Our model improves the state-of-the-art on the VQA dataset from 60.3% to 60.5%, and from 61.6% to 63.3% on the COCO-QA dataset. By using ResNet, the performance is further improved to 62.1% for VQA and 65.4% for COCO-QA.
Embodied Visual Recognition
Yang, Jianwei, Ren, Zhile, Xu, Mingze, Chen, Xinlei, Crandall, David, Parikh, Devi, Batra, Dhruv
Passive visual systems typically fail to recognize objects in the amodal setting where they are heavily occluded. In contrast, humans and other embodied agents have the ability to move in the environment, and actively control the viewing angle to better understand object shapes and semantics. In this work, we introduce the task of Embodied Visual Recognition (EVR): An agent is instantiated in a 3D environment close to an occluded target object, and is free to move in the environment to perform object classification, amodal object localization, and amodal object segmentation. To address this, we develop a new model called Embodied Mask R-CNN, for agents to learn to move strategically to improve their visual recognition abilities. We conduct experiments using the House3D environment. Experimental results show that: 1) agents with embodiment (movement) achieve better visual recognition performance than passive ones; 2) in order to improve visual recognition abilities, agents can learn strategical moving paths that are different from shortest paths.
Visual Curiosity: Learning to Ask Questions to Learn Visual Recognition
Yang, Jianwei, Lu, Jiasen, Lee, Stefan, Batra, Dhruv, Parikh, Devi
In an open-world setting, it is inevitable that an intelligent agent (e.g., a robot) will encounter visual objects, attributes or relationships it does not recognize. In this work, we develop an agent empowered with visual curiosity, i.e. the ability to ask questions to an Oracle (e.g., human) about the contents in images (e.g., What is the object on the left side of the red cube?) and build visual recognition model based on the answers received (e.g., Cylinder). In order to do this, the agent must (1) understand what it recognizes and what it does not, (2) formulate a valid, unambiguous and informative language query (a question) to ask the Oracle, (3) derive the parameters of visual classifiers from the Oracle response and (4) leverage the updated visual classifiers to ask more clarified questions. Specifically, we propose a novel framework and formulate the learning of visual curiosity as a reinforcement learning problem. In this framework, all components of our agent, visual recognition module (to see), question generation policy (to ask), answer digestion module (to understand) and graph memory module (to memorize), are learned entirely end-to-end to maximize the reward derived from the scene graph obtained by the agent as a consequence of the dialog with the Oracle. Importantly, the question generation policy is disentangled from the visual recognition system and specifics of the environment. Consequently, we demonstrate a sort of double generalization. Our question generation policy generalizes to new environments and a new pair of eyes, i.e., new visual system. Trained on a synthetic dataset, our results show that our agent learns new visual concepts significantly faster than several heuristic baselines, even when tested on synthetic environments with novel objects, as well as in a realistic environment.
Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model
Lu, Jiasen, Kannan, Anitha, Yang, Jianwei, Parikh, Devi, Batra, Dhruv
We present a novel training framework for neural sequence models, particularly for grounded dialog generation. The standard training paradigm for these models is maximum likelihood estimation (MLE), or minimizing the cross-entropy of the human responses. Across a variety of domains, a recurring problem with MLE trained generative neural dialog models (G) is that they tend to produce'safe' and generic responses ('I don't know', 'I can't tell'). In contrast, discriminative dialog models (D) that are trained to rank a list of candidate human responses outperform their generative counterparts; in terms of automatic metrics, diversity, and informativeness of the responses. However, D is not useful in practice since it can not be deployed to have real conversations with users. Our work aims to achieve the best of both worlds - the practical usefulness of G and the strong performance of D - via knowledge transfer from D to G. Our primary contribution is an end-to-end trainable generative visual dialog model, where G receives gradients from D as a perceptual (not adversarial) loss of the sequence sampledfrom G. We leverage the recently proposed Gumbel-Softmax (GS) approximation to the discrete distribution - specifically, a RNN augmented with a sequence of GS samplers, coupled with the straight-through gradient estimator to enable end-to-end differentiability. We also introduce a stronger encoder for visual dialog, and employ a self-attention mechanism for answer encoding along with a metric learning loss to aid D in better capturing semantic similarities in answer responses. Overall, our proposed model outperforms state-of-the-art on the VisDial dataset by a significant margin (2.67% on recall@10).
Hierarchical Question-Image Co-Attention for Visual Question Answering
Lu, Jiasen, Yang, Jianwei, Batra, Dhruv, Parikh, Devi
A number of recent works have proposed attention models for Visual Question Answering (VQA) that generate spatial maps highlighting image regions relevant to answering the question. In this paper, we argue that in addition to modeling "where to look" or visual attention, it is equally important to model "what words to listen to" or question attention. We present a novel co-attention model for VQA that jointly reasons about image and question attention. In addition, our model reasons about the question (and consequently the image via the co-attention mechanism) in a hierarchical fashion via a novel 1-dimensional convolution neural networks (CNN). Our model improves the state-of-the-art on the VQA dataset from 60.3% to 60.5%, and from 61.6% to 63.3% on the COCO-QA dataset. By using ResNet, the performance is further improved to 62.1% for VQA and 65.4% for COCO-QA.