Plotting

 Yang, Jian


Towards Better Spherical Sliced-Wasserstein Distance Learning with Data-Adaptive Discriminative Projection Direction

arXiv.org Artificial Intelligence

Spherical Sliced-Wasserstein (SSW) has recently been proposed to measure the discrepancy between spherical data distributions in various fields, such as geology, medical domains, computer vision, and deep representation learning. However, in the original SSW, all projection directions are treated equally, which is too idealistic and cannot accurately reflect the importance of different projection directions for various data distributions. To address this issue, we propose a novel data-adaptive Discriminative Spherical Sliced-Wasserstein (DSSW) distance, which utilizes a projected energy function to determine the discriminative projection direction for SSW. In our new DSSW, we introduce two types of projected energy functions to generate the weights for projection directions with complete theoretical guarantees. The first type employs a non-parametric deterministic function that transforms the projected Wasserstein distance into its corresponding weight in each projection direction. This improves the performance of the original SSW distance with negligible additional computational overhead. The second type utilizes a neural network-induced function that learns the projection direction weight through a parameterized neural network based on data projections. This further enhances the performance of the original SSW distance with less extra computational overhead. Finally, we evaluate the performance of our proposed DSSW by comparing it with several state-of-the-art methods across a variety of machine learning tasks, including gradient flows, density estimation on real earth data, and self-supervised learning.


Pre-training a Density-Aware Pose Transformer for Robust LiDAR-based 3D Human Pose Estimation

arXiv.org Artificial Intelligence

With the rapid development of autonomous driving, LiDAR-based 3D Human Pose Estimation (3D HPE) is becoming a research focus. However, due to the noise and sparsity of LiDAR-captured point clouds, robust human pose estimation remains challenging. Most of the existing methods use temporal information, multi-modal fusion, or SMPL optimization to correct biased results. In this work, we try to obtain sufficient information for 3D HPE only by modeling the intrinsic properties of low-quality point clouds. Hence, a simple yet powerful method is proposed, which provides insights both on modeling and augmentation of point clouds. Specifically, we first propose a concise and effective density-aware pose transformer (DAPT) to get stable keypoint representations. By using a set of joint anchors and a carefully designed exchange module, valid information is extracted from point clouds with different densities. Then 1D heatmaps are utilized to represent the precise locations of the keypoints. Secondly, a comprehensive LiDAR human synthesis and augmentation method is proposed to pre-train the model, enabling it to acquire a better human body prior. We increase the diversity of point clouds by randomly sampling human positions and orientations and by simulating occlusions through the addition of laser-level masks. Extensive experiments have been conducted on multiple datasets, including IMU-annotated LidarHuman26M, SLOPER4D, and manually annotated Waymo Open Dataset v2.0 (Waymo), HumanM3. Our method demonstrates SOTA performance in all scenarios. In particular, compared with LPFormer on Waymo, we reduce the average MPJPE by $10.0mm$. Compared with PRN on SLOPER4D, we notably reduce the average MPJPE by $20.7mm$.


ExecRepoBench: Multi-level Executable Code Completion Evaluation

arXiv.org Artificial Intelligence

Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of \ourmethod{} can be used as a high-performance, local service for programming development\footnote{\url{https://execrepobench.github.io/}}.


InstanceCap: Improving Text-to-Video Generation via Instance-aware Structured Caption

arXiv.org Artificial Intelligence

Text-to-video generation has evolved rapidly in recent years, delivering remarkable results. Training typically relies on video-caption paired data, which plays a crucial role in enhancing generation performance. However, current video captions often suffer from insufficient details, hallucinations and imprecise motion depiction, affecting the fidelity and consistency of generated videos. In this work, we propose a novel instance-aware structured caption framework, termed InstanceCap, to achieve instance-level and fine-grained video caption for the first time. Based on this scheme, we design an auxiliary models cluster to convert original video into instances to enhance instance fidelity. Video instances are further used to refine dense prompts into structured phrases, achieving concise yet precise descriptions. Furthermore, a 22K InstanceVid dataset is curated for training, and an enhancement pipeline that tailored to InstanceCap structure is proposed for inference. Experimental results demonstrate that our proposed InstanceCap significantly outperform previous models, ensuring high fidelity between captions and videos while reducing hallucinations.


Adaptive$^2$: Adaptive Domain Mining for Fine-grained Domain Adaptation Modeling

arXiv.org Artificial Intelligence

Advertising systems often face the multi-domain challenge, where data distributions vary significantly across scenarios. Existing domain adaptation methods primarily focus on building domain-adaptive neural networks but often rely on hand-crafted domain information, e.g., advertising placement, which may be sub-optimal. We think that fine-grained "domain" patterns exist that are difficult to hand-craft in online advertisement. Thus, we propose Adaptive$^2$, a novel framework that first learns domains adaptively using a domain mining module by self-supervision and then employs a shared&specific network to model shared and conflicting information. As a practice, we use VQ-VAE as the domain mining module and conduct extensive experiments on public benchmarks. Results show that traditional domain adaptation methods with hand-crafted domains perform no better than single-domain models under fair FLOPS conditions, highlighting the importance of domain definition. In contrast, Adaptive$^2$ outperforms existing approaches, emphasizing the effectiveness of our method and the significance of domain mining. We also deployed Adaptive$^2$ in the live streaming scenario of Kuaishou Advertising System, demonstrating its commercial value and potential for automatic domain identification. To the best of our knowledge, Adaptive$^2$ is the first approach to automatically learn both domain identification and adaptation in online advertising, opening new research directions for this area.


Evaluating and Aligning CodeLLMs on Human Preference

arXiv.org Artificial Intelligence

Code large language models (codeLLMs) have made significant strides in code generation. Most previous code-related benchmarks, which consist of various programming exercises along with the corresponding test cases, are used as a common measure to evaluate the performance and capabilities of code LLMs. However, the current code LLMs focus on synthesizing the correct code snippet, ignoring the alignment with human preferences, where the query should be sampled from the practical application scenarios and the model-generated responses should satisfy the human preference. To bridge the gap between the model-generated response and human preference, we present a rigorous human-curated benchmark CodeArena to emulate the complexity and diversity of real-world coding tasks, where 397 high-quality samples spanning 40 categories and 44 programming languages, carefully curated from user queries. Further, we propose a diverse synthetic instruction corpus SynCode-Instruct (nearly 20B tokens) by scaling instructions from the website to verify the effectiveness of the large-scale synthetic instruction fine-tuning, where Qwen2.5-SynCoder totally trained on synthetic instruction data can achieve top-tier performance of open-source code LLMs. The results find performance differences between execution-based benchmarks and CodeArena. Our systematic experiments of CodeArena on 40+ LLMs reveal a notable performance gap between open SOTA code LLMs (e.g. Qwen2.5-Coder) and proprietary LLMs (e.g., OpenAI o1), underscoring the importance of the human preference alignment.\footnote{\url{https://codearenaeval.github.io/ }}


Behavior Backdoor for Deep Learning Models

arXiv.org Artificial Intelligence

The various post-processing methods for deep-learning-based models, such as quantification, pruning, and fine-tuning, play an increasingly important role in artificial intelligence technology, with pre-train large models as one of the main development directions. However, this popular series of post-processing behaviors targeting pre-training deep models has become a breeding ground for new adversarial security issues. In this study, we take the first step towards ``behavioral backdoor'' attack, which is defined as a behavior-triggered backdoor model training procedure, to reveal a new paradigm of backdoor attacks. In practice, we propose the first pipeline of implementing behavior backdoor, i.e., the Quantification Backdoor (QB) attack, upon exploiting model quantification method as the set trigger. Specifically, to adapt the optimization goal of behavior backdoor, we introduce the behavior-driven backdoor object optimizing method by a bi-target behavior backdoor training loss, thus we could guide the poisoned model optimization direction. To update the parameters across multiple models, we adopt the address-shared backdoor model training, thereby the gradient information could be utilized for multimodel collaborative optimization. Extensive experiments have been conducted on different models, datasets, and tasks, demonstrating the effectiveness of this novel backdoor attack and its potential application threats.


LocRef-Diffusion:Tuning-Free Layout and Appearance-Guided Generation

arXiv.org Artificial Intelligence

Recently, text-to-image models based on diffusion have achieved remarkable success in generating high-quality images. However, the challenge of personalized, controllable generation of instances within these images remains an area in need of further development. In this paper, we present LocRef-Diffusion, a novel, tuning-free model capable of personalized customization of multiple instances' appearance and position within an image. To enhance the precision of instance placement, we introduce a Layout-net, which controls instance generation locations by leveraging both explicit instance layout information and an instance region cross-attention module. To improve the appearance fidelity to reference images, we employ an appearance-net that extracts instance appearance features and integrates them into the diffusion model through cross-attention mechanisms. We conducted extensive experiments on the COCO and OpenImages datasets, and the results demonstrate that our proposed method achieves state-of-the-art performance in layout and appearance guided generation.


Scaling Laws for Online Advertisement Retrieval

arXiv.org Artificial Intelligence

The scaling law is a notable property of neural network models and has significantly propelled the development of large language models. Scaling laws hold great promise in guiding model design and resource allocation. Recent research increasingly shows that scaling laws are not limited to NLP tasks or Transformer architectures; they also apply to domains such as recommendation. However, there is still a lack of literature on scaling law research in online advertisement retrieval systems. This may be because 1) identifying the scaling law for resource cost and online revenue is often expensive in both time and training resources for large-scale industrial applications, and 2) varying settings for different systems prevent the scaling law from being applied across various scenarios. To address these issues, we propose a lightweight paradigm to identify the scaling law of online revenue and machine cost for a certain online advertisement retrieval scenario with a low experimental cost. Specifically, we focus on a sole factor (FLOPs) and propose an offline metric named R/R* that exhibits a high linear correlation with online revenue for retrieval models. We estimate the machine cost offline via a simulation algorithm. Thus, we can transform most online experiments into low-cost offline experiments. We conduct comprehensive experiments to verify the effectiveness of our proposed metric R/R* and to identify the scaling law in the online advertisement retrieval system of Kuaishou. With the scaling law, we demonstrate practical applications for ROI-constrained model designing and multi-scenario resource allocation in Kuaishou advertising system. To the best of our knowledge, this is the first work to study the scaling laws for online advertisement retrieval of real-world systems, showing great potential for scaling law in advertising system optimization.


Leveraging MLLM Embeddings and Attribute Smoothing for Compositional Zero-Shot Learning

arXiv.org Artificial Intelligence

Compositional zero-shot learning (CZSL) aims to recognize novel compositions of attributes and objects learned from seen compositions. Previous works disentangle attribute and object by extracting shared and exclusive parts between image pairs sharing the same attribute (object), as well as aligning them with pretrained word embeddings to improve unseen attribute-object recognition. Despite the significant achievements of existing efforts, they are hampered by three limitations: (1) the efficacy of disentanglement is compromised due to the influence of the background and the intricate entanglement of attribute with object in the same parts. (2) existing word embeddings fail to capture complex multimodal semantic information. (3) overconfidence exhibited by existing models in seen compositions hinders their generalization to novel compositions. Being aware of these, we propose a novel framework named Multimodal Large Language Model (MLLM) embeddings and attribute smoothing guided disentanglement (TRIDENT) for CZSL. First, we leverage feature adaptive aggregation modules to mitigate the impact of background, and utilize learnable condition masks to capture multigranularity features for disentanglement. Then, the last hidden states of MLLM are employed as word embeddings for their superior representation capabilities. Moreover, we propose attribute smoothing with auxiliary attributes generated by Large Language Model (LLM) for seen compositions, addressing the issue of overconfidence by encouraging the model to learn more attributes in one given composition. Extensive experiments demonstrate that TRIDENT achieves state-of-the-art performance on three benchmarks.