Yang, Greg
A Fine-Grained Spectral Perspective on Neural Networks
Yang, Greg, Salman, Hadi
Are neural networks biased toward simple functions? Does depth always help learn more complex features? Is training the last layer of a network as good as training all layers? These questions seem unrelated at face value, but in this work we give all of them a common treatment from the spectral perspective. We will study the spectra of the *Conjugate Kernel*, CK, (also called the *Neural Network-Gaussian Process Kernel*), and the *Neural Tangent Kernel*, NTK. Roughly, the CK and the NTK tell us respectively "what a network looks like at initialization"and "what a network looks like during and after training." Their spectra then encode valuable information about the initial distribution and the training and generalization properties of neural networks. By analyzing the eigenvalues, we lend novel insights into the questions put forth at the beginning, and we verify these insights by extensive experiments of neural networks. We believe the computational tools we develop here for analyzing the spectra of CK and NTK serve as a solid foundation for future studies of deep neural networks. We have open-sourced the code for it and for generating the plots in this paper at github.com/thegregyang/NNspectra.
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Salman, Hadi, Yang, Greg, Li, Jerry, Zhang, Pengchuan, Zhang, Huan, Razenshteyn, Ilya, Bubeck, Sebastien
Recent works have shown the effectiveness of randomized smoothing as a scalable technique for building neural network-based classifiers that are provably robust to $\ell_2$-norm adversarial perturbations. In this paper, we employ adversarial training to improve the performance of randomized smoothing. We design an adapted attack for smoothed classifiers, and we show how this attack can be used in an adversarial training setting to boost the provable robustness of smoothed classifiers. We demonstrate through extensive experimentation that our method consistently outperforms all existing provably $\ell_2$-robust classifiers by a significant margin on ImageNet and CIFAR-10, establishing the state-of-the-art for provable $\ell_2$-defenses. Our code and trained models are available at http://github.com/Hadisalman/smoothing-adversarial .
A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks
Salman, Hadi, Yang, Greg, Zhang, Huan, Hsieh, Cho-Jui, Zhang, Pengchuan
Verification of neural networks enables us to gauge their robustness against adversarial attacks. Verification algorithms fall into two categories: exact verifiers that run in exponential time and relaxed verifiers that are efficient but incomplete. In this paper, we unify all existing LPrelaxed verifiers, to the best of our knowledge, under a general convex relaxation framework. This framework works for neural networks with diverse architectures and nonlinearities and covers both primal and dual views of neural network verification. We further prove strong duality between the primal and dual problems under very mild conditions. Next, we perform large-scale experiments, amounting to more than 22 CPUyears, to obtain exact solution to the convex-relaxed problem that is optimal within our framework for ReLU networks. We find the exact solution does not significantly improve upon the gap between PGD and existing relaxed verifiers for various networks trained normally or robustly on MNIST and CIFAR datasets. Our results suggest there is an inherent barrier to tight verification for the large class of methods captured by our framework. We discuss possible causes of this barrier and potential future directions for bypassing it.
NAIL: A General Interactive Fiction Agent
Hausknecht, Matthew, Loynd, Ricky, Yang, Greg, Swaminathan, Adith, Williams, Jason D.
Interactive Fiction (IF) games are complex textual decision making problems. This paper introduces NAIL, an autonomous agent for general parser-based IF games. NAIL won the 2018 Text Adventure AI Competition, where it was evaluated on twenty unseen games. This paper describes the architecture, development, and insights underpinning NAIL's performance.
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Yang, Greg
Several recent trends in machine learning theory and practice, from the design of state-of-the-art Gaussian Process to the convergence analysis of deep neural nets (DNNs) under stochastic gradient descent (SGD), have found it fruitful to study wide random neural networks. Central to these approaches are certain scaling limits of such networks. We unify these results by introducing a notion of a straightline \emph{tensor program} that can express most neural network computations, and we characterize its scaling limit when its tensors are large and randomized. From our framework follows (1) the convergence of random neural networks to Gaussian processes for architectures such as recurrent neural networks, convolutional neural networks, residual networks, attention, and any combination thereof, with or without batch normalization; (2) conditions under which the \emph{gradient independence assumption} -- that weights in backpropagation can be assumed to be independent from weights in the forward pass -- leads to correct computation of gradient dynamics, and corrections when it does not; (3) the convergence of the Neural Tangent Kernel, a recently proposed kernel used to predict training dynamics of neural networks under gradient descent, at initialization for all architectures in (1) without batch normalization. Mathematically, our framework is general enough to rederive classical random matrix results such as the semicircle and the Marchenko-Pastur laws, as well as recent results in neural network Jacobian singular values. We hope our work opens a way toward design of even stronger Gaussian Processes, initialization schemes to avoid gradient explosion/vanishing, and deeper understanding of SGD dynamics in modern architectures.
Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs
Gilboa, Dar, Chang, Bo, Chen, Minmin, Yang, Greg, Schoenholz, Samuel S., Chi, Ed H., Pennington, Jeffrey
Training recurrent neural networks (RNNs) on long sequence tasks is plagued with difficulties arising from the exponential explosion or vanishing of signals as they propagate forward or backward through the network. Many techniques have been proposed to ameliorate these issues, including various algorithmic and architectural modifications. Two of the most successful RNN architectures, the LSTM and the GRU, do exhibit modest improvements over vanilla RNN cells, but they still suffer from instabilities when trained on very long sequences. In this work, we develop a mean field theory of signal propagation in LSTMs and GRUs that enables us to calculate the time scales for signal propagation as well as the spectral properties of the state-to-state Jacobians. By optimizing these quantities in terms of the initialization hyperparameters, we derive a novel initialization scheme that eliminates or reduces training instabilities. We demonstrate the efficacy of our initialization scheme on multiple sequence tasks, on which it enables successful training while a standard initialization either fails completely or is orders of magnitude slower. We also observe a beneficial effect on generalization performance using this new initialization.