Goto

Collaborating Authors

 Yang, Cheng


Unchosen Experts Can Contribute Too: Unleashing MoE Models' Power by Self-Contrast

arXiv.org Artificial Intelligence

Mixture-of-Experts (MoE) has emerged as a prominent architecture for scaling model size while maintaining computational efficiency. In MoE, each token in the input sequence activates a different subset of experts determined by a routing mechanism. However, the unchosen experts in MoE models do not contribute to the output, potentially leading to underutilization of the model's capacity. In this work, we first conduct exploratory studies to demonstrate that increasing the number of activated experts does not necessarily improve and can even degrade the output quality. Then, we show that output distributions from an MoE model using different routing strategies substantially differ, indicating that different experts do not always act synergistically. Motivated by these findings, we propose Self-Contrast Mixture-of-Experts (SCMoE), a training-free strategy that utilizes unchosen experts in a self-contrast manner during inference. In SCMoE, the next-token probabilities are determined by contrasting the outputs from strong and weak activation using the same MoE model. Our method is conceptually simple and computationally lightweight, as it incurs minimal latency compared to greedy decoding. Experiments on several benchmarks (GSM8K, StrategyQA, MBPP and HumanEval) demonstrate that SCMoE can consistently enhance Mixtral 8x7B's reasoning capability across various domains. For example, it improves the accuracy on GSM8K from 61.79 to 66.94. Moreover, combining SCMoE with self-consistency yields additional gains, increasing major@20 accuracy from 75.59 to 78.31.


Online Self-Preferring Language Models

arXiv.org Artificial Intelligence

Aligning with human preference datasets has been critical to the success of large language models (LLMs). Reinforcement learning from human feedback (RLHF) employs a costly reward model to provide feedback for on-policy sampling responses. Recently, offline methods that directly fit responses with binary preferences in the dataset have emerged as alternatives. However, existing methods do not explicitly model preference strength information, which is crucial for distinguishing different response pairs. To overcome this limitation, we propose Online Self-Preferring (OSP) language models to learn from self-generated response pairs and self-judged preference strengths. For each prompt and corresponding self-generated responses, we introduce a ranked pairing method to construct multiple response pairs with preference strength information. We then propose the soft-preference cross-entropy loss to leverage such information. Empirically, we demonstrate that leveraging preference strength is crucial for avoiding overfitting and enhancing alignment performance. OSP achieves state-of-the-art alignment performance across various metrics in two widely used human preference datasets. OSP is parameter-efficient and more robust than the dominant online method, RLHF when limited offline data are available and generalizing to out-of-domain tasks. Moreover, OSP language models established by LLMs with proficiency in self-preferring can efficiently self-improve without external supervision.


Iterative Experience Refinement of Software-Developing Agents

arXiv.org Artificial Intelligence

Autonomous agents powered by large language models (LLMs) show significant potential for achieving high autonomy in various scenarios such as software development. Recent research has shown that LLM agents can leverage past experiences to reduce errors and enhance efficiency. However, the static experience paradigm, reliant on a fixed collection of past experiences acquired heuristically, lacks iterative refinement and thus hampers agents' adaptability. In this paper, we introduce the Iterative Experience Refinement framework, enabling LLM agents to refine experiences iteratively during task execution. We propose two fundamental patterns: the successive pattern, refining based on nearest experiences within a task batch, and the cumulative pattern, acquiring experiences across all previous task batches. Augmented with our heuristic experience elimination, the method prioritizes high-quality and frequently-used experiences, effectively managing the experience space and enhancing efficiency. Extensive experiments show that while the successive pattern may yield superior results, the cumulative pattern provides more stable performance. Moreover, experience elimination facilitates achieving better performance using just 11.54% of a high-quality subset.


FairSIN: Achieving Fairness in Graph Neural Networks through Sensitive Information Neutralization

arXiv.org Artificial Intelligence

Despite the remarkable success of graph neural networks (GNNs) in modeling graph-structured data, like other machine learning models, GNNs are also susceptible to making biased predictions based on sensitive attributes, such as race and gender. For fairness consideration, recent state-of-the-art (SOTA) methods propose to filter out sensitive information from inputs or representations, e.g., edge dropping or feature masking. However, we argue that such filtering-based strategies may also filter out some non-sensitive feature information, leading to a sub-optimal trade-off between predictive performance and fairness. To address this issue, we unveil an innovative neutralization-based paradigm, where additional Fairness-facilitating Features (F3) are incorporated into node features or representations before message passing. The F3 are expected to statistically neutralize the sensitive bias in node representations and provide additional nonsensitive information. We also provide theoretical explanations for our rationale, concluding that F3 can be realized by emphasizing the features of each node's heterogeneous neighbors (neighbors with different sensitive attributes). We name our method as FairSIN, and present three implementation variants from both data-centric and model-centric perspectives. Experimental results on five benchmark datasets with three different GNN backbones show that FairSIN significantly improves fairness metrics while maintaining high prediction accuracies.


Endowing Pre-trained Graph Models with Provable Fairness

arXiv.org Artificial Intelligence

Pre-trained graph models (PGMs) aim to capture transferable inherent structural properties and apply them to different downstream tasks. Similar to pre-trained language models, PGMs also inherit biases from human society, resulting in discriminatory behavior in downstream applications. The debiasing process of existing fair methods is generally coupled with parameter optimization of GNNs. However, different downstream tasks may be associated with different sensitive attributes in reality, directly employing existing methods to improve the fairness of PGMs is inflexible and inefficient. Moreover, most of them lack a theoretical guarantee, i.e., provable lower bounds on the fairness of model predictions, which directly provides assurance in a practical scenario. To overcome these limitations, we propose a novel adapter-tuning framework that endows pre-trained graph models with provable fairness (called GraphPAR). GraphPAR freezes the parameters of PGMs and trains a parameter-efficient adapter to flexibly improve the fairness of PGMs in downstream tasks. Specifically, we design a sensitive semantic augmenter on node representations, to extend the node representations with different sensitive attribute semantics for each node. The extended representations will be used to further train an adapter, to prevent the propagation of sensitive attribute semantics from PGMs to task predictions. Furthermore, with GraphPAR, we quantify whether the fairness of each node is provable, i.e., predictions are always fair within a certain range of sensitive attribute semantics. Experimental evaluations on real-world datasets demonstrate that GraphPAR achieves state-of-the-art prediction performance and fairness on node classification task. Furthermore, based on our GraphPAR, around 90\% nodes have provable fairness.


GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks

arXiv.org Artificial Intelligence

Large language models (LLMs) like ChatGPT, exhibit powerful zero-shot and instruction-following capabilities, have catalyzed a revolutionary transformation across diverse research fields of artificial intelligence, especially for open-ended tasks. While the idea is less explored in the graph domain, despite the availability of numerous powerful graph models (GMs), they are restricted to tasks in a pre-defined form. Although several methods applying LLMs to graphs have been proposed, they fail to simultaneously handle the pre-defined and open-ended tasks, with LLM as a node feature enhancer or as a standalone predictor. To break this dilemma, we propose to bridge the pretrained GM and LLM by a Translator, named GraphTranslator, aiming to leverage GM to handle the pre-defined tasks effectively and utilize the extended interface of LLMs to offer various open-ended tasks for GM. To train such Translator, we propose a Producer capable of constructing the graph-text alignment data along node information, neighbor information and model information. By treating the node representation as a type of language, the proposed GraphTranslator empowers an LLM to make predictions based on node representation and language instructions, providing a unified perspective for both pre-defined and open-ended tasks. Extensive results show that the proposed GraphTranslator effectively improves the results of zero-shot node classification. The graph question answering experiments reveal our GraphTranslator potential across a broad spectrum of open-ended applications through language instructions.


Data-centric Graph Learning: A Survey

arXiv.org Artificial Intelligence

The history of artificial intelligence (AI) has witnessed the significant impact of high-quality data on various deep learning models, such as ImageNet for AlexNet and ResNet. Recently, instead of designing more complex neural architectures as model-centric approaches, the attention of AI community has shifted to data-centric ones, which focuses on better processing data to strengthen the ability of neural models. Graph learning, which operates on ubiquitous topological data, also plays an important role in the era of deep learning. In this survey, we comprehensively review graph learning approaches from the data-centric perspective, and aim to answer three crucial questions: (1) when to modify graph data, (2) what part of the graph data needs modification to unlock the potential of various graph models, and (3) how to safeguard graph models from problematic data influence. Accordingly, we propose a novel taxonomy based on the stages in the graph learning pipeline, and highlight the processing methods for different data structures in the graph data, i.e., topology, feature and label. Furthermore, we analyze some potential problems embedded in graph data and discuss how to solve them in a data-centric manner. Finally, we provide some promising future directions for data-centric graph learning.


AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents

arXiv.org Artificial Intelligence

Evaluating large language models (LLMs) as general-purpose agents is essential for understanding their capabilities and facilitating their integration into practical applications. However, the evaluation process presents substantial challenges. A primary obstacle is the benchmarking of agent performance across diverse scenarios within a unified framework, especially in maintaining partially-observable environments and ensuring multi-round interactions. Moreover, current evaluation frameworks mostly focus on the final success rate, revealing few insights during the process and failing to provide a deep understanding of the model abilities. To address these challenges, we introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents. AgentBoard offers a fine-grained progress rate metric that captures incremental advancements as well as a comprehensive evaluation toolkit that features easy assessment of agents for multi-faceted analysis through interactive visualization. This not only sheds light on the capabilities and limitations of LLM agents but also propels the interpretability of their performance to the forefront. Ultimately, AgentBoard serves as a significant step towards demystifying agent behaviors and accelerating the development of stronger LLM agents.


Deep Learning-Based Knowledge Injection for Metaphor Detection: A Comprehensive Review

arXiv.org Artificial Intelligence

Metaphor as an advanced cognitive modality works by extracting familiar concepts in the target domain in order to understand vague and abstract concepts in the source domain. This helps humans to quickly understand and master new domains and thus adapt to changing environments. With the continuous development of metaphor research in the natural language community, many studies using knowledge-assisted models to detect textual metaphors have emerged in recent years. Compared to not using knowledge, systems that introduce various kinds of knowledge achieve greater performance gains and reach SOTA in a recent study. Based on this, the goal of this paper is to provide a comprehensive review of research advances in the application of deep learning for knowledge injection in metaphor detection tasks. We will first systematically summarize and generalize the mainstream knowledge and knowledge injection principles. Then, the datasets, evaluation metrics, and benchmark models used in metaphor detection tasks are examined. Finally, we explore the current issues facing knowledge injection methods and provide an outlook on future research directions.


AllSpark: a multimodal spatiotemporal general model

arXiv.org Artificial Intelligence

For a long time, due to the high heterogeneity in structure and semantics among various spatiotemporal modal data, the joint interpretation of multimodal spatiotemporal data has been an extremely challenging problem. The primary challenge resides in striking a trade-off between the cohesion and autonomy of diverse modalities, and this trade-off exhibits a progressively nonlinear nature as the number of modalities expands. We introduce the Language as Reference Framework (LaRF), a fundamental principle for constructing a multimodal unified model, aiming to strike a trade-off between the cohesion and autonomy among different modalities. We propose a multimodal spatiotemporal general artificial intelligence model, called AllSpark. Our model integrates thirteen different modalities into a unified framework, including 1D (text, code), 2D (RGB, infrared, SAR, multispectral, hyperspectral, tables, graphs, trajectory, oblique photography), and 3D (point clouds, videos) modalities. To achieve modal cohesion, AllSpark uniformly maps diverse modal features to the language modality. In addition, we design modality-specific prompts to guide multi-modal large language models in accurately perceiving multimodal data. To maintain modality autonomy, AllSpark introduces modality-specific encoders to extract the tokens of various spatiotemporal modalities. And modal bridge is employed to achieve dimensional projection from each modality to the language modality. Finally, observing a gap between the model's interpretation and downstream tasks, we designed task heads to enhance the model's generalization capability on specific downstream tasks. Experiments indicate that AllSpark achieves competitive accuracy in modalities such as RGB and trajectory compared to state-of-the-art models.