Xu, Zhiqiang
On the Comparison between Multi-modal and Single-modal Contrastive Learning
Huang, Wei, Han, Andi, Chen, Yongqiang, Cao, Yuan, Xu, Zhiqiang, Suzuki, Taiji
Multi-modal contrastive learning with language supervision has presented a paradigm shift in modern machine learning. By pre-training on a web-scale dataset, multi-modal contrastive learning can learn high-quality representations that exhibit impressive robustness and transferability. Despite its empirical success, the theoretical understanding is still in its infancy, especially regarding its comparison with single-modal contrastive learning. In this work, we introduce a feature learning theory framework that provides a theoretical foundation for understanding the differences between multi-modal and single-modal contrastive learning. Based on a data generation model consisting of signal and noise, our analysis is performed on a ReLU network trained with the InfoMax objective function. Through a trajectory-based optimization analysis and generalization characterization on downstream tasks, we identify the critical factor, which is the signal-to-noise ratio (SNR), that impacts the generalizability in downstream tasks of both multi-modal and single-modal contrastive learning. Through the cooperation between the two modalities, multi-modal learning can achieve better feature learning, leading to improvements in performance in downstream tasks compared to single-modal learning. Our analysis provides a unified framework that can characterize the optimization and generalization of both single-modal and multi-modal contrastive learning. Empirical experiments on both synthetic and real-world datasets further consolidate our theoretical findings.
Corrected Soft Actor Critic for Continuous Control
Chen, Yanjun, Zhang, Xinming, Wang, Xianghui, Xu, Zhiqiang, Shen, Xiaoyu, Zhang, Wei
The Soft Actor-Critic (SAC) algorithm is known for its stability and high sample efficiency in deep reinforcement learning. However, the tanh transformation applied to sampled actions in SAC distorts the action distribution, hindering the selection of the most probable actions. This paper presents a novel action sampling method that directly identifies and selects the most probable actions within the transformed distribution, thereby addressing this issue. Extensive experiments on standard continuous control benchmarks demonstrate that the proposed method significantly enhances SAC's performance, resulting in faster convergence and higher cumulative rewards compared to the original algorithm.
TextLap: Customizing Language Models for Text-to-Layout Planning
Chen, Jian, Zhang, Ruiyi, Zhou, Yufan, Healey, Jennifer, Gu, Jiuxiang, Xu, Zhiqiang, Chen, Changyou
Automatic generation of graphical layouts is crucial for many real-world applications, including designing posters, flyers, advertisements, and graphical user interfaces. Given the incredible ability of Large language models (LLMs) in both natural language understanding and generation, we believe that we could customize an LLM to help people create compelling graphical layouts starting with only text instructions from the user. We call our method TextLap (text-based layout planning). It uses a curated instruction-based layout planning dataset (InsLap) to customize LLMs as a graphic designer. We demonstrate the effectiveness of TextLap and show that it outperforms strong baselines, including GPT-4 based methods, for image generation and graphical design benchmarks.
Visual Question Decomposition on Multimodal Large Language Models
Zhang, Haowei, Liu, Jianzhe, Han, Zhen, Chen, Shuo, He, Bailan, Tresp, Volker, Xu, Zhiqiang, Gu, Jindong
Question decomposition has emerged as an effective strategy for prompting Large Language Models (LLMs) to answer complex questions. However, while existing methods primarily focus on unimodal language models, the question decomposition capability of Multimodal Large Language Models (MLLMs) has yet to be explored. To this end, this paper explores visual question decomposition on MLLMs. Specifically, we introduce a systematic evaluation framework including a dataset and several evaluation criteria to assess the quality of the decomposed sub-questions, revealing that existing MLLMs struggle to produce high-quality sub-questions. To address this limitation, we propose a specific finetuning dataset, DecoVQA+, for enhancing the model's question decomposition capability. Aiming at enabling models to perform appropriate selective decomposition, we propose an efficient finetuning pipeline. The finetuning pipeline consists of our proposed dataset and a training objective for selective decomposition. Finetuned MLLMs demonstrate significant improvements in the quality of sub-questions and the policy of selective question decomposition. Additionally, the models also achieve higher accuracy with selective decomposition on VQA benchmark datasets.
Intelligent Fish Detection System with Similarity-Aware Transformer
Li, Shengchen, Zuo, Haobo, Fu, Changhong, Wang, Zhiyong, Xu, Zhiqiang
Fish detection in water-land transfer has significantly contributed to the fishery. However, manual fish detection in crowd-collaboration performs inefficiently and expensively, involving insufficient accuracy. To further enhance the water-land transfer efficiency, improve detection accuracy, and reduce labor costs, this work designs a new type of lightweight and plug-and-play edge intelligent vision system to automatically conduct fast fish detection with high-speed camera. Moreover, a novel similarity-aware vision Transformer for fast fish detection (FishViT) is proposed to onboard identify every single fish in a dense and similar group. Specifically, a novel similarity-aware multi-level encoder is developed to enhance multi-scale features in parallel, thereby yielding discriminative representations for varying-size fish. Additionally, a new soft-threshold attention mechanism is introduced, which not only effectively eliminates background noise from images but also accurately recognizes both the edge details and overall features of different similar fish. 85 challenging video sequences with high framerate and high-resolution are collected to establish a benchmark from real fish water-land transfer scenarios. Exhaustive evaluation conducted with this challenging benchmark has proved the robustness and effectiveness of FishViT with over 80 FPS. Real work scenario tests validate the practicality of the proposed method. The code and demo video are available at https://github.com/vision4robotics/FishViT.
Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples
Bu, Dake, Huang, Wei, Suzuki, Taiji, Cheng, Ji, Zhang, Qingfu, Xu, Zhiqiang, Wong, Hau-San
Neural Network-based active learning (NAL) is a cost-effective data selection technique that utilizes neural networks to select and train on a small subset of samples. While existing work successfully develops various effective or theory-justified NAL algorithms, the understanding of the two commonly used query criteria of NAL: uncertainty-based and diversity-based, remains in its infancy. In this work, we try to move one step forward by offering a unified explanation for the success of both query criteria-based NAL from a feature learning view. Specifically, we consider a feature-noise data model comprising easy-to-learn or hard-to-learn features disrupted by noise, and conduct analysis over 2-layer NN-based NALs in the pool-based scenario. We provably show that both uncertainty-based and diversity-based NAL are inherently amenable to one and the same principle, i.e., striving to prioritize samples that contain yet-to-be-learned features. We further prove that this shared principle is the key to their success-achieve small test error within a small labeled set. Contrastingly, the strategy-free passive learning exhibits a large test error due to the inadequate learning of yet-to-be-learned features, necessitating resort to a significantly larger label complexity for a sufficient test error reduction. Experimental results validate our findings.
MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series
Chen, Zhicheng, Xiao, Xi, Xu, Ke, Zhang, Zhong, Rong, Yu, Li, Qing, Gan, Guojun, Xu, Zhiqiang, Zhao, Peilin
Multivariate time series prediction is widely used in daily life, which poses significant challenges due to the complex correlations that exist at multi-grained levels. Unfortunately, the majority of current time series prediction models fail to simultaneously learn the correlations of multivariate time series at multi-grained levels, resulting in suboptimal performance. To address this, we propose a Multi-Grained Correlations-based Prediction (MGCP) Network, which simultaneously considers the correlations at three granularity levels to enhance prediction performance. Specifically, MGCP utilizes Adaptive Fourier Neural Operators and Graph Convolutional Networks to learn the global spatiotemporal correlations and inter-series correlations, enabling the extraction of potential features from multivariate time series at fine-grained and medium-grained levels. Additionally, MGCP employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level, ensuring high fidelity between the generated forecast results and the actual data distribution. Finally, we compare MGCP with several state-of-the-art time series prediction algorithms on real-world benchmark datasets, and our results demonstrate the generality and effectiveness of the proposed model.
Variational Bayes for Federated Continual Learning
Yao, Dezhong, Li, Sanmu, Dai, Yutong, Xu, Zhiqiang, Hu, Shengshan, Zhao, Peilin, Sun, Lichao
Federated continual learning (FCL) has received increasing attention due to its potential in handling real-world streaming data, characterized by evolving data distributions and varying client classes over time. The constraints of storage limitations and privacy concerns confine local models to exclusively access the present data within each learning cycle. Consequently, this restriction induces performance degradation in model training on previous data, termed "catastrophic forgetting". However, existing FCL approaches need to identify or know changes in data distribution, which is difficult in the real world. To release these limitations, this paper directs attention to a broader continuous framework. Within this framework, we introduce Federated Bayesian Neural Network (FedBNN), a versatile and efficacious framework employing a variational Bayesian neural network across all clients. Our method continually integrates knowledge from local and historical data distributions into a single model, adeptly learning from new data distributions while retaining performance on historical distributions. We rigorously evaluate FedBNN's performance against prevalent methods in federated learning and continual learning using various metrics. Experimental analyses across diverse datasets demonstrate that FedBNN achieves state-of-the-art results in mitigating forgetting.
Hard-Thresholding Meets Evolution Strategies in Reinforcement Learning
Gao, Chengqian, de Vazelhes, William, Zhang, Hualin, Gu, Bin, Xu, Zhiqiang
Evolution Strategies (ES) have emerged as a competitive alternative for model-free reinforcement learning, showcasing exemplary performance in tasks like Mujoco and Atari. Notably, they shine in scenarios with imperfect reward functions, making them invaluable for real-world applications where dense reward signals may be elusive. Yet, an inherent assumption in ES, that all input features are task-relevant, poses challenges, especially when confronted with irrelevant features common in real-world problems. This work scrutinizes this limitation, particularly focusing on the Natural Evolution Strategies (NES) variant. We propose NESHT, a novel approach that integrates Hard-Thresholding (HT) with NES to champion sparsity, ensuring only pertinent features are employed. Backed by rigorous analysis and empirical tests, NESHT demonstrates its promise in mitigating the pitfalls of irrelevant features and shines in complex decision-making problems like noisy Mujoco and Atari tasks.
Learning Time-aware Graph Structures for Spatially Correlated Time Series Forecasting
Ma, Minbo, Hu, Jilin, Jensen, Christian S., Teng, Fei, Han, Peng, Xu, Zhiqiang, Li, Tianrui
Spatio-temporal forecasting of future values of spatially correlated time series is important across many cyber-physical systems (CPS). Recent studies offer evidence that the use of graph neural networks to capture latent correlations between time series holds a potential for enhanced forecasting. However, most existing methods rely on pre-defined or self-learning graphs, which are either static or unintentionally dynamic, and thus cannot model the time-varying correlations that exhibit trends and periodicities caused by the regularity of the underlying processes in CPS. To tackle such limitation, we propose Time-aware Graph Structure Learning (TagSL), which extracts time-aware correlations among time series by measuring the interaction of node and time representations in high-dimensional spaces. Notably, we introduce time discrepancy learning that utilizes contrastive learning with distance-based regularization terms to constrain learned spatial correlations to a trend sequence. Additionally, we propose a periodic discriminant function to enable the capture of periodic changes from the state of nodes. Next, we present a Graph Convolution-based Gated Recurrent Unit (GCGRU) that jointly captures spatial and temporal dependencies while learning time-aware and node-specific patterns. Finally, we introduce a unified framework named Time-aware Graph Convolutional Recurrent Network (TGCRN), combining TagSL, and GCGRU in an encoder-decoder architecture for multi-step spatio-temporal forecasting. We report on experiments with TGCRN and popular existing approaches on five real-world datasets, thus providing evidence that TGCRN is capable of advancing the state-of-the-art. We also cover a detailed ablation study and visualization analysis, offering detailed insight into the effectiveness of time-aware structure learning.