Goto

Collaborating Authors

 Xu, Zhi-Qin John


An Unsupervised Deep Learning Approach for the Wave Equation Inverse Problem

arXiv.org Artificial Intelligence

Full-waveform inversion (FWI) is a powerful geophysical imaging technique that infers high-resolution subsurface physical parameters by solving a non-convex optimization problem. However, due to limitations in observation, e.g., limited shots or receivers, and random noise, conventional inversion methods are confronted with numerous challenges, such as the local-minimum problem. In recent years, a substantial body of work has demonstrated that the integration of deep neural networks and partial differential equations for solving full-waveform inversion problems has shown promising performance. In this work, drawing inspiration from the expressive capacity of neural networks, we provide an unsupervised learning approach aimed at accurately reconstructing subsurface physical velocity parameters. This method is founded on a re-parametrization technique for Bayesian inference, achieved through a deep neural network with random weights. Notably, our proposed approach does not hinge upon the requirement of the labeled training dataset, rendering it exceedingly versatile and adaptable to diverse subsurface models. Extensive experiments show that the proposed approach performs noticeably better than existing conventional inversion methods.


Limitation of Characterizing Implicit Regularization by Data-independent Functions

arXiv.org Artificial Intelligence

In recent years, understanding the implicit regularization of neural networks (NNs) has become a central task in deep learning theory. However, implicit regularization is itself not completely defined and well understood. In this work, we attempt to mathematically define and study implicit regularization. Importantly, we explore the limitations of a common approach to characterizing implicit regularization using data-independent functions. We propose two dynamical mechanisms, i.e., Two-point and One-point Overlapping mechanisms, based on which we provide two recipes for producing classes of one-hidden-neuron NNs that provably cannot be fully characterized by a type of or all data-independent functions. Following the previous works, our results further emphasize the profound data dependency of implicit regularization in general, inspiring us to study in detail the data dependency of NN implicit regularization in the future.


Optimistic Estimate Uncovers the Potential of Nonlinear Models

arXiv.org Artificial Intelligence

We propose an optimistic estimate to evaluate the best possible fitting performance of nonlinear models. It yields an optimistic sample size that quantifies the smallest possible sample size to fit/recover a target function using a nonlinear model. We estimate the optimistic sample sizes for matrix factorization models, deep models, and deep neural networks (DNNs) with fully-connected or convolutional architecture. For each nonlinear model, our estimates predict a specific subset of targets that can be fitted at overparameterization, which are confirmed by our experiments. Our optimistic estimate reveals two special properties of the DNN models -- free expressiveness in width and costly expressiveness in connection. These properties suggest the following architecture design principles of DNNs: (i) feel free to add neurons/kernels; (ii) restrain from connecting neurons. Overall, our optimistic estimate theoretically unveils the vast potential of nonlinear models in fitting at overparameterization. Based on this framework, we anticipate gaining a deeper understanding of how and why numerous nonlinear models such as DNNs can effectively realize their potential in practice in the near future.


Stochastic Modified Equations and Dynamics of Dropout Algorithm

arXiv.org Artificial Intelligence

Dropout is a widely utilized regularization technique in the training of neural networks, nevertheless, its underlying mechanism and its impact on achieving good generalization abilities remain poorly understood. In this work, we derive the stochastic modified equations for analyzing the dynamics of dropout, where its discrete iteration process is approximated by a class of stochastic differential equations. In order to investigate the underlying mechanism by which dropout facilitates the identification of flatter minima, we study the noise structure of the derived stochastic modified equation for dropout. By drawing upon the structural resemblance between the Hessian and covariance through several intuitive approximations, we empirically demonstrate the universal presence of the inverse variance-flatness relation and the Hessian-variance relation, throughout the training process of dropout. These theoretical and empirical findings make a substantial contribution to our understanding of the inherent tendency of dropout to locate flatter minima.


Loss Spike in Training Neural Networks

arXiv.org Artificial Intelligence

In this work, we study the mechanism underlying loss spikes observed during neural network training. When the training enters a region, which has a smaller-loss-as-sharper (SLAS) structure, the training becomes unstable and loss exponentially increases once it is too sharp, i.e., the rapid ascent of the loss spike. The training becomes stable when it finds a flat region. The deviation in the first eigen direction (with maximum eigenvalue of the loss Hessian ($\lambda_{\mathrm{max}}$) is found to be dominated by low-frequency. Since low-frequency is captured very fast (frequency principle), the rapid descent is then observed. Inspired by our analysis of loss spikes, we revisit the link between $\lambda_{\mathrm{max}}$ flatness and generalization. For real datasets, low-frequency is often dominant and well-captured by both the training data and the test data. Then, a solution with good generalization and a solution with bad generalization can both learn low-frequency well, thus, they have little difference in the sharpest direction. Therefore, although $\lambda_{\mathrm{max}}$ can indicate the sharpness of the loss landscape, deviation in its corresponding eigen direction is not responsible for the generalization difference. We also find that loss spikes can facilitate condensation, i.e., input weights evolve towards the same, which may be the underlying mechanism for why the loss spike improves generalization, rather than simply controlling the value of $\lambda_{\mathrm{max}}$.


Understanding the Initial Condensation of Convolutional Neural Networks

arXiv.org Artificial Intelligence

Previous research has shown that fully-connected networks with small initialization and gradient-based training methods exhibit a phenomenon known as condensation during training. This phenomenon refers to the input weights of hidden neurons condensing into isolated orientations during training, revealing an implicit bias towards simple solutions in the parameter space. However, the impact of neural network structure on condensation has not been investigated yet. In this study, we focus on the investigation of convolutional neural networks (CNNs). Our experiments suggest that when subjected to small initialization and gradient-based training methods, kernel weights within the same CNN layer also cluster together during training, demonstrating a significant degree of condensation. Theoretically, we demonstrate that in a finite training period, kernels of a two-layer CNN with small initialization will converge to one or a few directions. This work represents a step towards a better understanding of the non-linear training behavior exhibited by neural networks with specialized structures.


Implicit regularization of dropout

arXiv.org Artificial Intelligence

It is important to understand how dropout, a popular regularization method, aids in achieving a good generalization solution during neural network training. In this work, we present a theoretical derivation of an implicit regularization of dropout, which is validated by a series of experiments. Additionally, we numerically study two implications of the implicit regularization, which intuitively rationalizes why dropout helps generalization. Firstly, we find that input weights of hidden neurons tend to condense on isolated orientations trained with dropout. Condensation is a feature in the non-linear learning process, which makes the network less complex. Secondly, we experimentally find that the training with dropout leads to the neural network with a flatter minimum compared with standard gradient descent training, and the implicit regularization is the key to finding flat solutions. Although our theory mainly focuses on dropout used in the last hidden layer, our experiments apply to general dropout in training neural networks. This work points out a distinct characteristic of dropout compared with stochastic gradient descent and serves as an important basis for fully understanding dropout.


Phase Diagram of Initial Condensation for Two-layer Neural Networks

arXiv.org Artificial Intelligence

The phenomenon of distinct behaviors exhibited by neural networks under varying scales of initialization remains an enigma in deep learning research. In this paper, based on the earlier work by Luo et al.~\cite{luo2021phase}, we present a phase diagram of initial condensation for two-layer neural networks. Condensation is a phenomenon wherein the weight vectors of neural networks concentrate on isolated orientations during the training process, and it is a feature in non-linear learning process that enables neural networks to possess better generalization abilities. Our phase diagram serves to provide a comprehensive understanding of the dynamical regimes of neural networks and their dependence on the choice of hyperparameters related to initialization. Furthermore, we demonstrate in detail the underlying mechanisms by which small initialization leads to condensation at the initial training stage.


Laplace-fPINNs: Laplace-based fractional physics-informed neural networks for solving forward and inverse problems of subdiffusion

arXiv.org Artificial Intelligence

The use of Physics-informed neural networks (PINNs) has shown promise in solving forward and inverse problems of fractional diffusion equations. However, due to the fact that automatic differentiation is not applicable for fractional derivatives, solving fractional diffusion equations using PINNs requires addressing additional challenges. To address this issue, this paper proposes an extension to PINNs called Laplace-based fractional physics-informed neural networks (Laplace-fPINNs), which can effectively solve the forward and inverse problems of fractional diffusion equations. This approach avoids introducing a mass of auxiliary points and simplifies the loss function. We validate the effectiveness of the Laplace-fPINNs approach using several examples. Our numerical results demonstrate that the Laplace-fPINNs method can effectively solve both the forward and inverse problems of high-dimensional fractional diffusion equations.


Linear Stability Hypothesis and Rank Stratification for Nonlinear Models

arXiv.org Artificial Intelligence

Models with nonlinear architectures/parameterizations such as deep neural networks (DNNs) are well known for their mysteriously good generalization performance at overparameterization. In this work, we tackle this mystery from a novel perspective focusing on the transition of the target recovery/fitting accuracy as a function of the training data size. We propose a rank stratification for general nonlinear models to uncover a model rank as an "effective size of parameters" for each function in the function space of the corresponding model. Moreover, we establish a linear stability theory proving that a target function almost surely becomes linearly stable when the training data size equals its model rank. Supported by our experiments, we propose a linear stability hypothesis that linearly stable functions are preferred by nonlinear training. By these results, model rank of a target function predicts a minimal training data size for its successful recovery. Specifically for the matrix factorization model and DNNs of fully-connected or convolutional architectures, our rank stratification shows that the model rank for specific target functions can be much lower than the size of model parameters. This result predicts the target recovery capability even at heavy overparameterization for these nonlinear models as demonstrated quantitatively by our experiments. Overall, our work provides a unified framework with quantitative prediction power to understand the mysterious target recovery behavior at overparameterization for general nonlinear models.